This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If K is an integer, then the cosine of 2 K _pi is 1. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos2kpi | ⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 𝐾 · ( 2 · π ) ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) | |
| 2 | 2cn | ⊢ 2 ∈ ℂ | |
| 3 | picn | ⊢ π ∈ ℂ | |
| 4 | 2 3 | mulcli | ⊢ ( 2 · π ) ∈ ℂ |
| 5 | mulcl | ⊢ ( ( 𝐾 ∈ ℂ ∧ ( 2 · π ) ∈ ℂ ) → ( 𝐾 · ( 2 · π ) ) ∈ ℂ ) | |
| 6 | 1 4 5 | sylancl | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 · ( 2 · π ) ) ∈ ℂ ) |
| 7 | 6 | addlidd | ⊢ ( 𝐾 ∈ ℤ → ( 0 + ( 𝐾 · ( 2 · π ) ) ) = ( 𝐾 · ( 2 · π ) ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 0 + ( 𝐾 · ( 2 · π ) ) ) ) = ( cos ‘ ( 𝐾 · ( 2 · π ) ) ) ) |
| 9 | 0cn | ⊢ 0 ∈ ℂ | |
| 10 | cosper | ⊢ ( ( 0 ∈ ℂ ∧ 𝐾 ∈ ℤ ) → ( cos ‘ ( 0 + ( 𝐾 · ( 2 · π ) ) ) ) = ( cos ‘ 0 ) ) | |
| 11 | 9 10 | mpan | ⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 0 + ( 𝐾 · ( 2 · π ) ) ) ) = ( cos ‘ 0 ) ) |
| 12 | cos0 | ⊢ ( cos ‘ 0 ) = 1 | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 0 + ( 𝐾 · ( 2 · π ) ) ) ) = 1 ) |
| 14 | 8 13 | eqtr3d | ⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 𝐾 · ( 2 · π ) ) ) = 1 ) |