This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of the cosine of an integer multiple of _pi is 1. (Contributed by NM, 19-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coskpi | |- ( K e. ZZ -> ( abs ` ( cos ` ( K x. _pi ) ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 2 | 2cn | |- 2 e. CC |
|
| 3 | picn | |- _pi e. CC |
|
| 4 | mul12 | |- ( ( K e. CC /\ 2 e. CC /\ _pi e. CC ) -> ( K x. ( 2 x. _pi ) ) = ( 2 x. ( K x. _pi ) ) ) |
|
| 5 | 2 3 4 | mp3an23 | |- ( K e. CC -> ( K x. ( 2 x. _pi ) ) = ( 2 x. ( K x. _pi ) ) ) |
| 6 | 1 5 | syl | |- ( K e. ZZ -> ( K x. ( 2 x. _pi ) ) = ( 2 x. ( K x. _pi ) ) ) |
| 7 | 6 | fveq2d | |- ( K e. ZZ -> ( cos ` ( K x. ( 2 x. _pi ) ) ) = ( cos ` ( 2 x. ( K x. _pi ) ) ) ) |
| 8 | cos2kpi | |- ( K e. ZZ -> ( cos ` ( K x. ( 2 x. _pi ) ) ) = 1 ) |
|
| 9 | zre | |- ( K e. ZZ -> K e. RR ) |
|
| 10 | pire | |- _pi e. RR |
|
| 11 | remulcl | |- ( ( K e. RR /\ _pi e. RR ) -> ( K x. _pi ) e. RR ) |
|
| 12 | 9 10 11 | sylancl | |- ( K e. ZZ -> ( K x. _pi ) e. RR ) |
| 13 | 12 | recnd | |- ( K e. ZZ -> ( K x. _pi ) e. CC ) |
| 14 | cos2t | |- ( ( K x. _pi ) e. CC -> ( cos ` ( 2 x. ( K x. _pi ) ) ) = ( ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) - 1 ) ) |
|
| 15 | 13 14 | syl | |- ( K e. ZZ -> ( cos ` ( 2 x. ( K x. _pi ) ) ) = ( ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) - 1 ) ) |
| 16 | 7 8 15 | 3eqtr3rd | |- ( K e. ZZ -> ( ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) - 1 ) = 1 ) |
| 17 | 12 | recoscld | |- ( K e. ZZ -> ( cos ` ( K x. _pi ) ) e. RR ) |
| 18 | 17 | recnd | |- ( K e. ZZ -> ( cos ` ( K x. _pi ) ) e. CC ) |
| 19 | 18 | sqcld | |- ( K e. ZZ -> ( ( cos ` ( K x. _pi ) ) ^ 2 ) e. CC ) |
| 20 | mulcl | |- ( ( 2 e. CC /\ ( ( cos ` ( K x. _pi ) ) ^ 2 ) e. CC ) -> ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) e. CC ) |
|
| 21 | 2 19 20 | sylancr | |- ( K e. ZZ -> ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) e. CC ) |
| 22 | ax-1cn | |- 1 e. CC |
|
| 23 | subadd | |- ( ( ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) - 1 ) = 1 <-> ( 1 + 1 ) = ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) ) ) |
|
| 24 | 22 22 23 | mp3an23 | |- ( ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) e. CC -> ( ( ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) - 1 ) = 1 <-> ( 1 + 1 ) = ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) ) ) |
| 25 | 21 24 | syl | |- ( K e. ZZ -> ( ( ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) - 1 ) = 1 <-> ( 1 + 1 ) = ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) ) ) |
| 26 | 16 25 | mpbid | |- ( K e. ZZ -> ( 1 + 1 ) = ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) ) |
| 27 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 28 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 29 | 27 28 | eqtr2i | |- ( 1 + 1 ) = ( 2 x. 1 ) |
| 30 | 26 29 | eqtr3di | |- ( K e. ZZ -> ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) = ( 2 x. 1 ) ) |
| 31 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 32 | mulcan | |- ( ( ( ( cos ` ( K x. _pi ) ) ^ 2 ) e. CC /\ 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) = ( 2 x. 1 ) <-> ( ( cos ` ( K x. _pi ) ) ^ 2 ) = 1 ) ) |
|
| 33 | 22 31 32 | mp3an23 | |- ( ( ( cos ` ( K x. _pi ) ) ^ 2 ) e. CC -> ( ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) = ( 2 x. 1 ) <-> ( ( cos ` ( K x. _pi ) ) ^ 2 ) = 1 ) ) |
| 34 | 19 33 | syl | |- ( K e. ZZ -> ( ( 2 x. ( ( cos ` ( K x. _pi ) ) ^ 2 ) ) = ( 2 x. 1 ) <-> ( ( cos ` ( K x. _pi ) ) ^ 2 ) = 1 ) ) |
| 35 | 30 34 | mpbid | |- ( K e. ZZ -> ( ( cos ` ( K x. _pi ) ) ^ 2 ) = 1 ) |
| 36 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 37 | 35 36 | eqtr4di | |- ( K e. ZZ -> ( ( cos ` ( K x. _pi ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 38 | 1re | |- 1 e. RR |
|
| 39 | sqabs | |- ( ( ( cos ` ( K x. _pi ) ) e. RR /\ 1 e. RR ) -> ( ( ( cos ` ( K x. _pi ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( abs ` ( cos ` ( K x. _pi ) ) ) = ( abs ` 1 ) ) ) |
|
| 40 | 17 38 39 | sylancl | |- ( K e. ZZ -> ( ( ( cos ` ( K x. _pi ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( abs ` ( cos ` ( K x. _pi ) ) ) = ( abs ` 1 ) ) ) |
| 41 | 37 40 | mpbid | |- ( K e. ZZ -> ( abs ` ( cos ` ( K x. _pi ) ) ) = ( abs ` 1 ) ) |
| 42 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 43 | 41 42 | eqtrdi | |- ( K e. ZZ -> ( abs ` ( cos ` ( K x. _pi ) ) ) = 1 ) |