This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a product is zero, one of its factors must be zero. Theorem I.11 of Apostol p. 18. (Contributed by NM, 9-Oct-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul0or | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 3 | 2 | mul02d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐵 ≠ 0 ) → ( 0 · 𝐵 ) = 0 ) |
| 4 | 3 | eqeq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) = ( 0 · 𝐵 ) ↔ ( 𝐴 · 𝐵 ) = 0 ) ) |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 7 | 0cnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐵 ≠ 0 ) → 0 ∈ ℂ ) | |
| 8 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 ) | |
| 9 | 6 7 2 8 | mulcan2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) = ( 0 · 𝐵 ) ↔ 𝐴 = 0 ) ) |
| 10 | 4 9 | bitr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) = 0 ↔ 𝐴 = 0 ) ) |
| 11 | 10 | biimpd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) = 0 → 𝐴 = 0 ) ) |
| 12 | 11 | impancom | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐴 · 𝐵 ) = 0 ) → ( 𝐵 ≠ 0 → 𝐴 = 0 ) ) |
| 13 | 12 | necon1bd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐴 · 𝐵 ) = 0 ) → ( ¬ 𝐴 = 0 → 𝐵 = 0 ) ) |
| 14 | 13 | orrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐴 · 𝐵 ) = 0 ) → ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 15 | 14 | ex | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) = 0 → ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
| 16 | 1 | mul02d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 0 · 𝐵 ) = 0 ) |
| 17 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 · 𝐵 ) = ( 0 · 𝐵 ) ) | |
| 18 | 17 | eqeq1d | ⊢ ( 𝐴 = 0 → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 0 · 𝐵 ) = 0 ) ) |
| 19 | 16 18 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 = 0 → ( 𝐴 · 𝐵 ) = 0 ) ) |
| 20 | 5 | mul01d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 0 ) = 0 ) |
| 21 | oveq2 | ⊢ ( 𝐵 = 0 → ( 𝐴 · 𝐵 ) = ( 𝐴 · 0 ) ) | |
| 22 | 21 | eqeq1d | ⊢ ( 𝐵 = 0 → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 · 0 ) = 0 ) ) |
| 23 | 20 22 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 = 0 → ( 𝐴 · 𝐵 ) = 0 ) ) |
| 24 | 19 23 | jaod | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) → ( 𝐴 · 𝐵 ) = 0 ) ) |
| 25 | 15 24 | impbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |