This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Location of the zeroes of cosine in ( 0 , _pi ) . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coseq00topi | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( ( cos ‘ 𝐴 ) = 0 ↔ 𝐴 = ( π / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) → ( cos ‘ 𝐴 ) = 0 ) | |
| 2 | simpl | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ( 0 [,] π ) ) | |
| 3 | 0re | ⊢ 0 ∈ ℝ | |
| 4 | pire | ⊢ π ∈ ℝ | |
| 5 | 3 4 | elicc2i | ⊢ ( 𝐴 ∈ ( 0 [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 6 | 2 5 | sylib | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 7 | 6 | simp1d | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℝ ) |
| 8 | 7 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 9 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 0 < 𝐴 ) | |
| 10 | simplr | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 < ( π / 2 ) ) | |
| 11 | 3 | rexri | ⊢ 0 ∈ ℝ* |
| 12 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 13 | 12 | rexri | ⊢ ( π / 2 ) ∈ ℝ* |
| 14 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) ) ) | |
| 15 | 11 13 14 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) ) |
| 16 | 8 9 10 15 | syl3anbrc | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ( 0 (,) ( π / 2 ) ) ) |
| 17 | sincosq1sgn | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ 𝐴 ) ∧ 0 < ( cos ‘ 𝐴 ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → ( 0 < ( sin ‘ 𝐴 ) ∧ 0 < ( cos ‘ 𝐴 ) ) ) |
| 19 | 18 | simprd | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → 0 < ( cos ‘ 𝐴 ) ) |
| 20 | 19 | gt0ne0d | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 < 𝐴 ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 21 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → 0 = 𝐴 ) | |
| 22 | 21 | fveq2d | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → ( cos ‘ 0 ) = ( cos ‘ 𝐴 ) ) |
| 23 | cos0 | ⊢ ( cos ‘ 0 ) = 1 | |
| 24 | 22 23 | eqtr3di | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → ( cos ‘ 𝐴 ) = 1 ) |
| 25 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 26 | 25 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → 1 ≠ 0 ) |
| 27 | 24 26 | eqnetrd | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) ∧ 0 = 𝐴 ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 28 | 6 | simp2d | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 0 ≤ 𝐴 ) |
| 29 | 0red | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 0 ∈ ℝ ) | |
| 30 | 29 7 | leloed | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 31 | 28 30 | mpbid | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
| 33 | 20 27 32 | mpjaodan | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 34 | 1 33 | pm2.21ddne | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 < ( π / 2 ) ) → 𝐴 = ( π / 2 ) ) |
| 35 | simpr | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 = ( π / 2 ) ) → 𝐴 = ( π / 2 ) ) | |
| 36 | simplr | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) → ( cos ‘ 𝐴 ) = 0 ) | |
| 37 | 7 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → 𝐴 ∈ ℝ ) |
| 38 | simplr | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → ( π / 2 ) < 𝐴 ) | |
| 39 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → 𝐴 < π ) | |
| 40 | 4 | rexri | ⊢ π ∈ ℝ* |
| 41 | elioo2 | ⊢ ( ( ( π / 2 ) ∈ ℝ* ∧ π ∈ ℝ* ) → ( 𝐴 ∈ ( ( π / 2 ) (,) π ) ↔ ( 𝐴 ∈ ℝ ∧ ( π / 2 ) < 𝐴 ∧ 𝐴 < π ) ) ) | |
| 42 | 13 40 41 | mp2an | ⊢ ( 𝐴 ∈ ( ( π / 2 ) (,) π ) ↔ ( 𝐴 ∈ ℝ ∧ ( π / 2 ) < 𝐴 ∧ 𝐴 < π ) ) |
| 43 | 37 38 39 42 | syl3anbrc | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → 𝐴 ∈ ( ( π / 2 ) (,) π ) ) |
| 44 | sincosq2sgn | ⊢ ( 𝐴 ∈ ( ( π / 2 ) (,) π ) → ( 0 < ( sin ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < 0 ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → ( 0 < ( sin ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < 0 ) ) |
| 46 | 45 | simprd | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → ( cos ‘ 𝐴 ) < 0 ) |
| 47 | 46 | lt0ne0d | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 < π ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 48 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → 𝐴 = π ) | |
| 49 | 48 | fveq2d | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → ( cos ‘ 𝐴 ) = ( cos ‘ π ) ) |
| 50 | cospi | ⊢ ( cos ‘ π ) = - 1 | |
| 51 | 49 50 | eqtrdi | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → ( cos ‘ 𝐴 ) = - 1 ) |
| 52 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 53 | 52 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → - 1 ≠ 0 ) |
| 54 | 51 53 | eqnetrd | ⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) ∧ 𝐴 = π ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 55 | 6 | simp3d | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ≤ π ) |
| 56 | 4 | a1i | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → π ∈ ℝ ) |
| 57 | 7 56 | leloed | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 ≤ π ↔ ( 𝐴 < π ∨ 𝐴 = π ) ) ) |
| 58 | 55 57 | mpbid | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 < π ∨ 𝐴 = π ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) → ( 𝐴 < π ∨ 𝐴 = π ) ) |
| 60 | 47 54 59 | mpjaodan | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 61 | 36 60 | pm2.21ddne | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ ( π / 2 ) < 𝐴 ) → 𝐴 = ( π / 2 ) ) |
| 62 | 56 | rehalfcld | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( π / 2 ) ∈ ℝ ) |
| 63 | 7 62 | lttri4d | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 < ( π / 2 ) ∨ 𝐴 = ( π / 2 ) ∨ ( π / 2 ) < 𝐴 ) ) |
| 64 | 34 35 61 63 | mpjao3dan | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 = ( π / 2 ) ) |
| 65 | fveq2 | ⊢ ( 𝐴 = ( π / 2 ) → ( cos ‘ 𝐴 ) = ( cos ‘ ( π / 2 ) ) ) | |
| 66 | coshalfpi | ⊢ ( cos ‘ ( π / 2 ) ) = 0 | |
| 67 | 65 66 | eqtrdi | ⊢ ( 𝐴 = ( π / 2 ) → ( cos ‘ 𝐴 ) = 0 ) |
| 68 | 67 | adantl | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐴 = ( π / 2 ) ) → ( cos ‘ 𝐴 ) = 0 ) |
| 69 | 64 68 | impbida | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( ( cos ‘ 𝐴 ) = 0 ↔ 𝐴 = ( π / 2 ) ) ) |