This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Location of the zeroes of cosine in ( -upi (,] pi ) . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coseq0negpitopi | ⊢ ( 𝐴 ∈ ( - π (,] π ) → ( ( cos ‘ 𝐴 ) = 0 ↔ 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ( - π (,] π ) ) | |
| 2 | pire | ⊢ π ∈ ℝ | |
| 3 | 2 | renegcli | ⊢ - π ∈ ℝ |
| 4 | 3 | rexri | ⊢ - π ∈ ℝ* |
| 5 | elioc2 | ⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( 𝐴 ∈ ( - π (,] π ) ↔ ( 𝐴 ∈ ℝ ∧ - π < 𝐴 ∧ 𝐴 ≤ π ) ) ) | |
| 6 | 4 2 5 | mp2an | ⊢ ( 𝐴 ∈ ( - π (,] π ) ↔ ( 𝐴 ∈ ℝ ∧ - π < 𝐴 ∧ 𝐴 ≤ π ) ) |
| 7 | 1 6 | sylib | ⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → ( 𝐴 ∈ ℝ ∧ - π < 𝐴 ∧ 𝐴 ≤ π ) ) |
| 8 | 7 | simp1d | ⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℝ ) |
| 9 | 0re | ⊢ 0 ∈ ℝ | |
| 10 | 9 | a1i | ⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 0 ∈ ℝ ) |
| 11 | 8 | adantr | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℂ ) |
| 13 | 8 | recnd | ⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℂ ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℂ ) |
| 15 | cosneg | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |
| 17 | simplr | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → ( cos ‘ 𝐴 ) = 0 ) | |
| 18 | 16 17 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → ( cos ‘ - 𝐴 ) = 0 ) |
| 19 | 8 | renegcld | ⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → - 𝐴 ∈ ℝ ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → - 𝐴 ∈ ℝ ) |
| 21 | simpr | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ≤ 0 ) | |
| 22 | 11 | le0neg1d | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) |
| 23 | 21 22 | mpbid | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 0 ≤ - 𝐴 ) |
| 24 | 2 | a1i | ⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → π ∈ ℝ ) |
| 25 | 7 | simp2d | ⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → - π < 𝐴 ) |
| 26 | 24 8 25 | ltnegcon1d | ⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → - 𝐴 < π ) |
| 27 | 19 24 26 | ltled | ⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → - 𝐴 ≤ π ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → - 𝐴 ≤ π ) |
| 29 | 9 2 | elicc2i | ⊢ ( - 𝐴 ∈ ( 0 [,] π ) ↔ ( - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ∧ - 𝐴 ≤ π ) ) |
| 30 | 20 23 28 29 | syl3anbrc | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → - 𝐴 ∈ ( 0 [,] π ) ) |
| 31 | coseq00topi | ⊢ ( - 𝐴 ∈ ( 0 [,] π ) → ( ( cos ‘ - 𝐴 ) = 0 ↔ - 𝐴 = ( π / 2 ) ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → ( ( cos ‘ - 𝐴 ) = 0 ↔ - 𝐴 = ( π / 2 ) ) ) |
| 33 | 18 32 | mpbid | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → - 𝐴 = ( π / 2 ) ) |
| 34 | 12 33 | negcon1ad | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → - ( π / 2 ) = 𝐴 ) |
| 35 | 34 | eqcomd | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 = - ( π / 2 ) ) |
| 36 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 37 | 36 | renegcli | ⊢ - ( π / 2 ) ∈ ℝ |
| 38 | prid2g | ⊢ ( - ( π / 2 ) ∈ ℝ → - ( π / 2 ) ∈ { ( π / 2 ) , - ( π / 2 ) } ) | |
| 39 | eleq1a | ⊢ ( - ( π / 2 ) ∈ { ( π / 2 ) , - ( π / 2 ) } → ( 𝐴 = - ( π / 2 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) ) | |
| 40 | 37 38 39 | mp2b | ⊢ ( 𝐴 = - ( π / 2 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) |
| 41 | 35 40 | syl | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) |
| 42 | simplr | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → ( cos ‘ 𝐴 ) = 0 ) | |
| 43 | 8 | adantr | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
| 44 | simpr | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → 0 ≤ 𝐴 ) | |
| 45 | 7 | simp3d | ⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ≤ π ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 ≤ π ) |
| 47 | 9 2 | elicc2i | ⊢ ( 𝐴 ∈ ( 0 [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 48 | 43 44 46 47 | syl3anbrc | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ( 0 [,] π ) ) |
| 49 | coseq00topi | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( ( cos ‘ 𝐴 ) = 0 ↔ 𝐴 = ( π / 2 ) ) ) | |
| 50 | 48 49 | syl | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → ( ( cos ‘ 𝐴 ) = 0 ↔ 𝐴 = ( π / 2 ) ) ) |
| 51 | 42 50 | mpbid | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 = ( π / 2 ) ) |
| 52 | prid1g | ⊢ ( ( π / 2 ) ∈ ℝ → ( π / 2 ) ∈ { ( π / 2 ) , - ( π / 2 ) } ) | |
| 53 | eleq1a | ⊢ ( ( π / 2 ) ∈ { ( π / 2 ) , - ( π / 2 ) } → ( 𝐴 = ( π / 2 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) ) | |
| 54 | 36 52 53 | mp2b | ⊢ ( 𝐴 = ( π / 2 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) |
| 55 | 51 54 | syl | ⊢ ( ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) |
| 56 | 8 10 41 55 | lecasei | ⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ ( cos ‘ 𝐴 ) = 0 ) → 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) |
| 57 | elpri | ⊢ ( 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } → ( 𝐴 = ( π / 2 ) ∨ 𝐴 = - ( π / 2 ) ) ) | |
| 58 | fveq2 | ⊢ ( 𝐴 = ( π / 2 ) → ( cos ‘ 𝐴 ) = ( cos ‘ ( π / 2 ) ) ) | |
| 59 | coshalfpi | ⊢ ( cos ‘ ( π / 2 ) ) = 0 | |
| 60 | 58 59 | eqtrdi | ⊢ ( 𝐴 = ( π / 2 ) → ( cos ‘ 𝐴 ) = 0 ) |
| 61 | fveq2 | ⊢ ( 𝐴 = - ( π / 2 ) → ( cos ‘ 𝐴 ) = ( cos ‘ - ( π / 2 ) ) ) | |
| 62 | cosneghalfpi | ⊢ ( cos ‘ - ( π / 2 ) ) = 0 | |
| 63 | 61 62 | eqtrdi | ⊢ ( 𝐴 = - ( π / 2 ) → ( cos ‘ 𝐴 ) = 0 ) |
| 64 | 60 63 | jaoi | ⊢ ( ( 𝐴 = ( π / 2 ) ∨ 𝐴 = - ( π / 2 ) ) → ( cos ‘ 𝐴 ) = 0 ) |
| 65 | 57 64 | syl | ⊢ ( 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } → ( cos ‘ 𝐴 ) = 0 ) |
| 66 | 65 | adantl | ⊢ ( ( 𝐴 ∈ ( - π (,] π ) ∧ 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( cos ‘ 𝐴 ) = 0 ) |
| 67 | 56 66 | impbida | ⊢ ( 𝐴 ∈ ( - π (,] π ) → ( ( cos ‘ 𝐴 ) = 0 ↔ 𝐴 ∈ { ( π / 2 ) , - ( π / 2 ) } ) ) |