This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Location of the zeroes of cosine in ( 0 , _pi ) . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coseq00topi | |- ( A e. ( 0 [,] _pi ) -> ( ( cos ` A ) = 0 <-> A = ( _pi / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | |- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) -> ( cos ` A ) = 0 ) |
|
| 2 | simpl | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> A e. ( 0 [,] _pi ) ) |
|
| 3 | 0re | |- 0 e. RR |
|
| 4 | pire | |- _pi e. RR |
|
| 5 | 3 4 | elicc2i | |- ( A e. ( 0 [,] _pi ) <-> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) |
| 6 | 2 5 | sylib | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) |
| 7 | 6 | simp1d | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> A e. RR ) |
| 8 | 7 | ad2antrr | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> A e. RR ) |
| 9 | simpr | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> 0 < A ) |
|
| 10 | simplr | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> A < ( _pi / 2 ) ) |
|
| 11 | 3 | rexri | |- 0 e. RR* |
| 12 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 13 | 12 | rexri | |- ( _pi / 2 ) e. RR* |
| 14 | elioo2 | |- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) ) |
|
| 15 | 11 13 14 | mp2an | |- ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) |
| 16 | 8 9 10 15 | syl3anbrc | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> A e. ( 0 (,) ( _pi / 2 ) ) ) |
| 17 | sincosq1sgn | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |
|
| 18 | 16 17 | syl | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |
| 19 | 18 | simprd | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> 0 < ( cos ` A ) ) |
| 20 | 19 | gt0ne0d | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> ( cos ` A ) =/= 0 ) |
| 21 | simpr | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 = A ) -> 0 = A ) |
|
| 22 | 21 | fveq2d | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 = A ) -> ( cos ` 0 ) = ( cos ` A ) ) |
| 23 | cos0 | |- ( cos ` 0 ) = 1 |
|
| 24 | 22 23 | eqtr3di | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 = A ) -> ( cos ` A ) = 1 ) |
| 25 | ax-1ne0 | |- 1 =/= 0 |
|
| 26 | 25 | a1i | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 = A ) -> 1 =/= 0 ) |
| 27 | 24 26 | eqnetrd | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 = A ) -> ( cos ` A ) =/= 0 ) |
| 28 | 6 | simp2d | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> 0 <_ A ) |
| 29 | 0red | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> 0 e. RR ) |
|
| 30 | 29 7 | leloed | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 31 | 28 30 | mpbid | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( 0 < A \/ 0 = A ) ) |
| 32 | 31 | adantr | |- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) -> ( 0 < A \/ 0 = A ) ) |
| 33 | 20 27 32 | mpjaodan | |- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) -> ( cos ` A ) =/= 0 ) |
| 34 | 1 33 | pm2.21ddne | |- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) -> A = ( _pi / 2 ) ) |
| 35 | simpr | |- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A = ( _pi / 2 ) ) -> A = ( _pi / 2 ) ) |
|
| 36 | simplr | |- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) -> ( cos ` A ) = 0 ) |
|
| 37 | 7 | ad2antrr | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> A e. RR ) |
| 38 | simplr | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> ( _pi / 2 ) < A ) |
|
| 39 | simpr | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> A < _pi ) |
|
| 40 | 4 | rexri | |- _pi e. RR* |
| 41 | elioo2 | |- ( ( ( _pi / 2 ) e. RR* /\ _pi e. RR* ) -> ( A e. ( ( _pi / 2 ) (,) _pi ) <-> ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) ) ) |
|
| 42 | 13 40 41 | mp2an | |- ( A e. ( ( _pi / 2 ) (,) _pi ) <-> ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) ) |
| 43 | 37 38 39 42 | syl3anbrc | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> A e. ( ( _pi / 2 ) (,) _pi ) ) |
| 44 | sincosq2sgn | |- ( A e. ( ( _pi / 2 ) (,) _pi ) -> ( 0 < ( sin ` A ) /\ ( cos ` A ) < 0 ) ) |
|
| 45 | 43 44 | syl | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> ( 0 < ( sin ` A ) /\ ( cos ` A ) < 0 ) ) |
| 46 | 45 | simprd | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> ( cos ` A ) < 0 ) |
| 47 | 46 | lt0ne0d | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> ( cos ` A ) =/= 0 ) |
| 48 | simpr | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A = _pi ) -> A = _pi ) |
|
| 49 | 48 | fveq2d | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A = _pi ) -> ( cos ` A ) = ( cos ` _pi ) ) |
| 50 | cospi | |- ( cos ` _pi ) = -u 1 |
|
| 51 | 49 50 | eqtrdi | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A = _pi ) -> ( cos ` A ) = -u 1 ) |
| 52 | neg1ne0 | |- -u 1 =/= 0 |
|
| 53 | 52 | a1i | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A = _pi ) -> -u 1 =/= 0 ) |
| 54 | 51 53 | eqnetrd | |- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A = _pi ) -> ( cos ` A ) =/= 0 ) |
| 55 | 6 | simp3d | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> A <_ _pi ) |
| 56 | 4 | a1i | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> _pi e. RR ) |
| 57 | 7 56 | leloed | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( A <_ _pi <-> ( A < _pi \/ A = _pi ) ) ) |
| 58 | 55 57 | mpbid | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( A < _pi \/ A = _pi ) ) |
| 59 | 58 | adantr | |- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) -> ( A < _pi \/ A = _pi ) ) |
| 60 | 47 54 59 | mpjaodan | |- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) -> ( cos ` A ) =/= 0 ) |
| 61 | 36 60 | pm2.21ddne | |- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) -> A = ( _pi / 2 ) ) |
| 62 | 56 | rehalfcld | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( _pi / 2 ) e. RR ) |
| 63 | 7 62 | lttri4d | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( A < ( _pi / 2 ) \/ A = ( _pi / 2 ) \/ ( _pi / 2 ) < A ) ) |
| 64 | 34 35 61 63 | mpjao3dan | |- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> A = ( _pi / 2 ) ) |
| 65 | fveq2 | |- ( A = ( _pi / 2 ) -> ( cos ` A ) = ( cos ` ( _pi / 2 ) ) ) |
|
| 66 | coshalfpi | |- ( cos ` ( _pi / 2 ) ) = 0 |
|
| 67 | 65 66 | eqtrdi | |- ( A = ( _pi / 2 ) -> ( cos ` A ) = 0 ) |
| 68 | 67 | adantl | |- ( ( A e. ( 0 [,] _pi ) /\ A = ( _pi / 2 ) ) -> ( cos ` A ) = 0 ) |
| 69 | 64 68 | impbida | |- ( A e. ( 0 [,] _pi ) -> ( ( cos ` A ) = 0 <-> A = ( _pi / 2 ) ) ) |