This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a positive integer is divisible by each element of a set of pairwise coprime positive integers, then it is divisible by their product. (Contributed by AV, 19-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprmproddvds | ⊢ ( ( ( 𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin ) ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleq1lem | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ↔ ( ∅ ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ) | |
| 2 | difeq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ∖ { 𝑚 } ) = ( ∅ ∖ { 𝑚 } ) ) | |
| 3 | 2 | raleqdv | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 4 | 3 | raleqbi1dv | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 5 | raleq | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∀ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) | |
| 6 | 4 5 | anbi12d | ⊢ ( 𝑥 = ∅ → ( ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
| 7 | 1 6 | anbi12d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ↔ ( ( ∅ ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
| 8 | prodeq1 | ⊢ ( 𝑥 = ∅ → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ) | |
| 9 | 8 | breq1d | ⊢ ( 𝑥 = ∅ → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 10 | 7 9 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ( ( ∅ ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
| 11 | cleq1lem | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ↔ ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ) | |
| 12 | difeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∖ { 𝑚 } ) = ( 𝑦 ∖ { 𝑚 } ) ) | |
| 13 | 12 | raleqdv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 14 | 13 | raleqbi1dv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 15 | raleq | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) | |
| 16 | 14 15 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
| 17 | 11 16 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ↔ ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
| 18 | prodeq1 | ⊢ ( 𝑥 = 𝑦 → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) | |
| 19 | 18 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 20 | 17 19 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
| 21 | cleq1lem | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ) | |
| 22 | difeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∖ { 𝑚 } ) = ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ) | |
| 23 | 22 | raleqdv | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 24 | 23 | raleqbi1dv | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 25 | raleq | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) | |
| 26 | 24 25 | anbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
| 27 | 21 26 | anbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ↔ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
| 28 | prodeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ) | |
| 29 | 28 | breq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 30 | 27 29 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
| 31 | cleq1lem | ⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ↔ ( 𝑀 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ) | |
| 32 | difeq1 | ⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∖ { 𝑚 } ) = ( 𝑀 ∖ { 𝑚 } ) ) | |
| 33 | 32 | raleqdv | ⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 34 | 33 | raleqbi1dv | ⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 35 | raleq | ⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) | |
| 36 | 34 35 | anbi12d | ⊢ ( 𝑥 = 𝑀 → ( ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
| 37 | 31 36 | anbi12d | ⊢ ( 𝑥 = 𝑀 → ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ↔ ( ( 𝑀 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
| 38 | prodeq1 | ⊢ ( 𝑥 = 𝑀 → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ) | |
| 39 | 38 | breq1d | ⊢ ( 𝑥 = 𝑀 → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 40 | 37 39 | imbi12d | ⊢ ( 𝑥 = 𝑀 → ( ( ( ( 𝑥 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ( ( 𝑀 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
| 41 | prod0 | ⊢ ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) = 1 | |
| 42 | nnz | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) | |
| 43 | 1dvds | ⊢ ( 𝐾 ∈ ℤ → 1 ∥ 𝐾 ) | |
| 44 | 42 43 | syl | ⊢ ( 𝐾 ∈ ℕ → 1 ∥ 𝐾 ) |
| 45 | 41 44 | eqbrtrid | ⊢ ( 𝐾 ∈ ℕ → ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |
| 46 | 45 | adantr | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |
| 47 | 46 | ad2antlr | ⊢ ( ( ( ∅ ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |
| 48 | coprmproddvdslem | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) | |
| 49 | 10 20 30 40 47 48 | findcard2s | ⊢ ( 𝑀 ∈ Fin → ( ( ( 𝑀 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 50 | 49 | exp4c | ⊢ ( 𝑀 ∈ Fin → ( 𝑀 ⊆ ℕ → ( ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
| 51 | 50 | impcom | ⊢ ( ( 𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin ) → ( ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
| 52 | 51 | 3imp | ⊢ ( ( ( 𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin ) ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |