This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conjghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| conjghm.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| conjghm.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| conjsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) | ||
| conjnmz.1 | ⊢ 𝑁 = { 𝑦 ∈ 𝑋 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) } | ||
| Assertion | conjnmzb | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐴 ∈ 𝑁 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conjghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | conjghm.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | conjghm.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | conjsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) | |
| 5 | conjnmz.1 | ⊢ 𝑁 = { 𝑦 ∈ 𝑋 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) } | |
| 6 | 5 | ssrab3 | ⊢ 𝑁 ⊆ 𝑋 |
| 7 | simpr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝐴 ∈ 𝑁 ) | |
| 8 | 6 7 | sselid | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝐴 ∈ 𝑋 ) |
| 9 | 1 2 3 4 5 | conjnmz | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝑆 = ran 𝐹 ) |
| 10 | 8 9 | jca | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → ( 𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹 ) ) |
| 11 | simprl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹 ) ) → 𝐴 ∈ 𝑋 ) | |
| 12 | simplrr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹 ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝑆 = ran 𝐹 ) | |
| 13 | 12 | eleq2d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐴 + 𝑤 ) ∈ 𝑆 ↔ ( 𝐴 + 𝑤 ) ∈ ran 𝐹 ) ) |
| 14 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 15 | 14 | ad3antrrr | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 16 | simpllr | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) | |
| 17 | 1 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑋 ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
| 19 | 18 | sselda | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑋 ) |
| 20 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( 𝐴 + ( 𝑥 − 𝐴 ) ) ) |
| 21 | 15 16 19 16 20 | syl13anc | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( 𝐴 + ( 𝑥 − 𝐴 ) ) ) |
| 22 | 21 | eqeq1d | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( 𝐴 + 𝑤 ) ↔ ( 𝐴 + ( 𝑥 − 𝐴 ) ) = ( 𝐴 + 𝑤 ) ) ) |
| 23 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 − 𝐴 ) ∈ 𝑋 ) |
| 24 | 15 19 16 23 | syl3anc | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 − 𝐴 ) ∈ 𝑋 ) |
| 25 | simplr | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑤 ∈ 𝑋 ) | |
| 26 | 1 2 | grplcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑥 − 𝐴 ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 + ( 𝑥 − 𝐴 ) ) = ( 𝐴 + 𝑤 ) ↔ ( 𝑥 − 𝐴 ) = 𝑤 ) ) |
| 27 | 15 24 25 16 26 | syl13anc | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 + ( 𝑥 − 𝐴 ) ) = ( 𝐴 + 𝑤 ) ↔ ( 𝑥 − 𝐴 ) = 𝑤 ) ) |
| 28 | 1 2 3 | grpsubadd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑥 − 𝐴 ) = 𝑤 ↔ ( 𝑤 + 𝐴 ) = 𝑥 ) ) |
| 29 | 15 19 16 25 28 | syl13anc | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − 𝐴 ) = 𝑤 ↔ ( 𝑤 + 𝐴 ) = 𝑥 ) ) |
| 30 | 22 27 29 | 3bitrd | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( 𝐴 + 𝑤 ) ↔ ( 𝑤 + 𝐴 ) = 𝑥 ) ) |
| 31 | eqcom | ⊢ ( ( 𝐴 + 𝑤 ) = ( ( 𝐴 + 𝑥 ) − 𝐴 ) ↔ ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( 𝐴 + 𝑤 ) ) | |
| 32 | eqcom | ⊢ ( 𝑥 = ( 𝑤 + 𝐴 ) ↔ ( 𝑤 + 𝐴 ) = 𝑥 ) | |
| 33 | 30 31 32 | 3bitr4g | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 + 𝑤 ) = ( ( 𝐴 + 𝑥 ) − 𝐴 ) ↔ 𝑥 = ( 𝑤 + 𝐴 ) ) ) |
| 34 | 33 | rexbidva | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ 𝑆 ( 𝐴 + 𝑤 ) = ( ( 𝐴 + 𝑥 ) − 𝐴 ) ↔ ∃ 𝑥 ∈ 𝑆 𝑥 = ( 𝑤 + 𝐴 ) ) ) |
| 35 | 34 | adantlrr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ 𝑆 ( 𝐴 + 𝑤 ) = ( ( 𝐴 + 𝑥 ) − 𝐴 ) ↔ ∃ 𝑥 ∈ 𝑆 𝑥 = ( 𝑤 + 𝐴 ) ) ) |
| 36 | ovex | ⊢ ( 𝐴 + 𝑤 ) ∈ V | |
| 37 | eqeq1 | ⊢ ( 𝑦 = ( 𝐴 + 𝑤 ) → ( 𝑦 = ( ( 𝐴 + 𝑥 ) − 𝐴 ) ↔ ( 𝐴 + 𝑤 ) = ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ) | |
| 38 | 37 | rexbidv | ⊢ ( 𝑦 = ( 𝐴 + 𝑤 ) → ( ∃ 𝑥 ∈ 𝑆 𝑦 = ( ( 𝐴 + 𝑥 ) − 𝐴 ) ↔ ∃ 𝑥 ∈ 𝑆 ( 𝐴 + 𝑤 ) = ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ) |
| 39 | 4 | rnmpt | ⊢ ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑆 𝑦 = ( ( 𝐴 + 𝑥 ) − 𝐴 ) } |
| 40 | 36 38 39 | elab2 | ⊢ ( ( 𝐴 + 𝑤 ) ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑆 ( 𝐴 + 𝑤 ) = ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) |
| 41 | risset | ⊢ ( ( 𝑤 + 𝐴 ) ∈ 𝑆 ↔ ∃ 𝑥 ∈ 𝑆 𝑥 = ( 𝑤 + 𝐴 ) ) | |
| 42 | 35 40 41 | 3bitr4g | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐴 + 𝑤 ) ∈ ran 𝐹 ↔ ( 𝑤 + 𝐴 ) ∈ 𝑆 ) ) |
| 43 | 13 42 | bitrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐴 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝐴 ) ∈ 𝑆 ) ) |
| 44 | 43 | ralrimiva | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹 ) ) → ∀ 𝑤 ∈ 𝑋 ( ( 𝐴 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝐴 ) ∈ 𝑆 ) ) |
| 45 | 5 | elnmz | ⊢ ( 𝐴 ∈ 𝑁 ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝐴 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝐴 ) ∈ 𝑆 ) ) ) |
| 46 | 11 44 45 | sylanbrc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹 ) ) → 𝐴 ∈ 𝑁 ) |
| 47 | 10 46 | impbida | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐴 ∈ 𝑁 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹 ) ) ) |