This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | grpaddsubass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − 𝑍 ) = ( 𝑋 + ( 𝑌 − 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) | |
| 5 | simpr1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 6 | simpr2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 8 | 1 7 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 9 | 8 | 3ad2antr3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 10 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑋 + ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 11 | 4 5 6 9 10 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑋 + ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 12 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 13 | 12 | 3adant3r3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 14 | simpr3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 15 | 1 2 7 3 | grpsubval | ⊢ ( ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) − 𝑍 ) = ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 16 | 13 14 15 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − 𝑍 ) = ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 17 | 1 2 7 3 | grpsubval | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) = ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 18 | 6 14 17 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 − 𝑍 ) = ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 19 | 18 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + ( 𝑌 − 𝑍 ) ) = ( 𝑋 + ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 20 | 11 16 19 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − 𝑍 ) = ( 𝑋 + ( 𝑌 − 𝑍 ) ) ) |