This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conjghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| conjghm.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| conjghm.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| conjsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) | ||
| conjnmz.1 | ⊢ 𝑁 = { 𝑦 ∈ 𝑋 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) } | ||
| Assertion | conjnmz | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝑆 = ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conjghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | conjghm.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | conjghm.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | conjsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) | |
| 5 | conjnmz.1 | ⊢ 𝑁 = { 𝑦 ∈ 𝑋 ∣ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) } | |
| 6 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 8 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 9 | 5 | ssrab3 | ⊢ 𝑁 ⊆ 𝑋 |
| 10 | simplr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝐴 ∈ 𝑁 ) | |
| 11 | 9 10 | sselid | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) |
| 12 | 1 8 7 11 | grpinvcld | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 13 | 1 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑋 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝑆 ⊆ 𝑋 ) |
| 15 | 14 | sselda | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ 𝑋 ) |
| 16 | 1 2 7 12 15 11 | grpassd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) |
| 17 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 18 | 1 2 17 8 7 11 | grprinvd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
| 19 | 18 | oveq1d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + 𝑤 ) = ( ( 0g ‘ 𝐺 ) + 𝑤 ) ) |
| 20 | 1 2 7 11 12 15 | grpassd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + 𝑤 ) = ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ) |
| 21 | 1 2 17 7 15 | grplidd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) + 𝑤 ) = 𝑤 ) |
| 22 | 19 20 21 | 3eqtr3d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) = 𝑤 ) |
| 23 | simpr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ 𝑆 ) | |
| 24 | 22 23 | eqeltrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ∈ 𝑆 ) |
| 25 | 1 2 7 12 15 | grpcld | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ∈ 𝑋 ) |
| 26 | 5 | nmzbi | ⊢ ( ( 𝐴 ∈ 𝑁 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ∈ 𝑋 ) → ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) ∈ 𝑆 ) ) |
| 27 | 10 25 26 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) ∈ 𝑆 ) ) |
| 28 | 24 27 | mpbid | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑤 ) + 𝐴 ) ∈ 𝑆 ) |
| 29 | 16 28 | eqeltrrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ∈ 𝑆 ) |
| 30 | oveq2 | ⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) → ( 𝐴 + 𝑥 ) = ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ) | |
| 31 | 30 | oveq1d | ⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) ) |
| 32 | ovex | ⊢ ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) ∈ V | |
| 33 | 31 4 32 | fvmpt | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ∈ 𝑆 → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) ) |
| 34 | 29 33 | syl | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) ) |
| 35 | 18 | oveq1d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + ( 𝑤 + 𝐴 ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝑤 + 𝐴 ) ) ) |
| 36 | 1 2 7 15 11 | grpcld | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑤 + 𝐴 ) ∈ 𝑋 ) |
| 37 | 1 2 7 11 12 36 | grpassd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + ( 𝑤 + 𝐴 ) ) = ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ) |
| 38 | 1 2 17 7 36 | grplidd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑤 + 𝐴 ) ) = ( 𝑤 + 𝐴 ) ) |
| 39 | 35 37 38 | 3eqtr3d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = ( 𝑤 + 𝐴 ) ) |
| 40 | 39 | oveq1d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) − 𝐴 ) = ( ( 𝑤 + 𝐴 ) − 𝐴 ) ) |
| 41 | 1 2 3 | grppncan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑤 + 𝐴 ) − 𝐴 ) = 𝑤 ) |
| 42 | 7 15 11 41 | syl3anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝑤 + 𝐴 ) − 𝐴 ) = 𝑤 ) |
| 43 | 34 40 42 | 3eqtrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) = 𝑤 ) |
| 44 | ovex | ⊢ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ∈ V | |
| 45 | 44 4 | fnmpti | ⊢ 𝐹 Fn 𝑆 |
| 46 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝑆 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ∈ 𝑆 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ∈ ran 𝐹 ) | |
| 47 | 45 29 46 | sylancr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑤 + 𝐴 ) ) ) ∈ ran 𝐹 ) |
| 48 | 43 47 | eqeltrrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ ran 𝐹 ) |
| 49 | 48 | ex | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → ( 𝑤 ∈ 𝑆 → 𝑤 ∈ ran 𝐹 ) ) |
| 50 | 49 | ssrdv | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝑆 ⊆ ran 𝐹 ) |
| 51 | 6 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 52 | simplr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ 𝑁 ) | |
| 53 | 9 52 | sselid | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) |
| 54 | 14 | sselda | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑋 ) |
| 55 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( 𝐴 + ( 𝑥 − 𝐴 ) ) ) |
| 56 | 51 53 54 53 55 | syl13anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( 𝐴 + ( 𝑥 − 𝐴 ) ) ) |
| 57 | 1 2 3 | grpnpcan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) = 𝑥 ) |
| 58 | 51 54 53 57 | syl3anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) = 𝑥 ) |
| 59 | simpr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) | |
| 60 | 58 59 | eqeltrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ) |
| 61 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 − 𝐴 ) ∈ 𝑋 ) |
| 62 | 51 54 53 61 | syl3anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 − 𝐴 ) ∈ 𝑋 ) |
| 63 | 5 | nmzbi | ⊢ ( ( 𝐴 ∈ 𝑁 ∧ ( 𝑥 − 𝐴 ) ∈ 𝑋 ) → ( ( 𝐴 + ( 𝑥 − 𝐴 ) ) ∈ 𝑆 ↔ ( ( 𝑥 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ) ) |
| 64 | 52 62 63 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 + ( 𝑥 − 𝐴 ) ) ∈ 𝑆 ↔ ( ( 𝑥 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ) ) |
| 65 | 60 64 | mpbird | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐴 + ( 𝑥 − 𝐴 ) ) ∈ 𝑆 ) |
| 66 | 56 65 | eqeltrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) ∈ 𝑆 ) |
| 67 | 66 4 | fmptd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝐹 : 𝑆 ⟶ 𝑆 ) |
| 68 | 67 | frnd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → ran 𝐹 ⊆ 𝑆 ) |
| 69 | 50 68 | eqssd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑁 ) → 𝑆 = ran 𝐹 ) |