This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conjghm.x | |- X = ( Base ` G ) |
|
| conjghm.p | |- .+ = ( +g ` G ) |
||
| conjghm.m | |- .- = ( -g ` G ) |
||
| conjsubg.f | |- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
||
| conjnmz.1 | |- N = { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } |
||
| Assertion | conjnmzb | |- ( S e. ( SubGrp ` G ) -> ( A e. N <-> ( A e. X /\ S = ran F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conjghm.x | |- X = ( Base ` G ) |
|
| 2 | conjghm.p | |- .+ = ( +g ` G ) |
|
| 3 | conjghm.m | |- .- = ( -g ` G ) |
|
| 4 | conjsubg.f | |- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
|
| 5 | conjnmz.1 | |- N = { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } |
|
| 6 | 5 | ssrab3 | |- N C_ X |
| 7 | simpr | |- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> A e. N ) |
|
| 8 | 6 7 | sselid | |- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> A e. X ) |
| 9 | 1 2 3 4 5 | conjnmz | |- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S = ran F ) |
| 10 | 8 9 | jca | |- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> ( A e. X /\ S = ran F ) ) |
| 11 | simprl | |- ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) -> A e. X ) |
|
| 12 | simplrr | |- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> S = ran F ) |
|
| 13 | 12 | eleq2d | |- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( ( A .+ w ) e. S <-> ( A .+ w ) e. ran F ) ) |
| 14 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 15 | 14 | ad3antrrr | |- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> G e. Grp ) |
| 16 | simpllr | |- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> A e. X ) |
|
| 17 | 1 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ X ) |
| 18 | 17 | ad2antrr | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) -> S C_ X ) |
| 19 | 18 | sselda | |- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> x e. X ) |
| 20 | 1 2 3 | grpaddsubass | |- ( ( G e. Grp /\ ( A e. X /\ x e. X /\ A e. X ) ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) |
| 21 | 15 16 19 16 20 | syl13anc | |- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) |
| 22 | 21 | eqeq1d | |- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( ( A .+ x ) .- A ) = ( A .+ w ) <-> ( A .+ ( x .- A ) ) = ( A .+ w ) ) ) |
| 23 | 1 3 | grpsubcl | |- ( ( G e. Grp /\ x e. X /\ A e. X ) -> ( x .- A ) e. X ) |
| 24 | 15 19 16 23 | syl3anc | |- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( x .- A ) e. X ) |
| 25 | simplr | |- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> w e. X ) |
|
| 26 | 1 2 | grplcan | |- ( ( G e. Grp /\ ( ( x .- A ) e. X /\ w e. X /\ A e. X ) ) -> ( ( A .+ ( x .- A ) ) = ( A .+ w ) <-> ( x .- A ) = w ) ) |
| 27 | 15 24 25 16 26 | syl13anc | |- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( A .+ ( x .- A ) ) = ( A .+ w ) <-> ( x .- A ) = w ) ) |
| 28 | 1 2 3 | grpsubadd | |- ( ( G e. Grp /\ ( x e. X /\ A e. X /\ w e. X ) ) -> ( ( x .- A ) = w <-> ( w .+ A ) = x ) ) |
| 29 | 15 19 16 25 28 | syl13anc | |- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( x .- A ) = w <-> ( w .+ A ) = x ) ) |
| 30 | 22 27 29 | 3bitrd | |- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( ( A .+ x ) .- A ) = ( A .+ w ) <-> ( w .+ A ) = x ) ) |
| 31 | eqcom | |- ( ( A .+ w ) = ( ( A .+ x ) .- A ) <-> ( ( A .+ x ) .- A ) = ( A .+ w ) ) |
|
| 32 | eqcom | |- ( x = ( w .+ A ) <-> ( w .+ A ) = x ) |
|
| 33 | 30 31 32 | 3bitr4g | |- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( A .+ w ) = ( ( A .+ x ) .- A ) <-> x = ( w .+ A ) ) ) |
| 34 | 33 | rexbidva | |- ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) -> ( E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) <-> E. x e. S x = ( w .+ A ) ) ) |
| 35 | 34 | adantlrr | |- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) <-> E. x e. S x = ( w .+ A ) ) ) |
| 36 | ovex | |- ( A .+ w ) e. _V |
|
| 37 | eqeq1 | |- ( y = ( A .+ w ) -> ( y = ( ( A .+ x ) .- A ) <-> ( A .+ w ) = ( ( A .+ x ) .- A ) ) ) |
|
| 38 | 37 | rexbidv | |- ( y = ( A .+ w ) -> ( E. x e. S y = ( ( A .+ x ) .- A ) <-> E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) ) ) |
| 39 | 4 | rnmpt | |- ran F = { y | E. x e. S y = ( ( A .+ x ) .- A ) } |
| 40 | 36 38 39 | elab2 | |- ( ( A .+ w ) e. ran F <-> E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) ) |
| 41 | risset | |- ( ( w .+ A ) e. S <-> E. x e. S x = ( w .+ A ) ) |
|
| 42 | 35 40 41 | 3bitr4g | |- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( ( A .+ w ) e. ran F <-> ( w .+ A ) e. S ) ) |
| 43 | 13 42 | bitrd | |- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( ( A .+ w ) e. S <-> ( w .+ A ) e. S ) ) |
| 44 | 43 | ralrimiva | |- ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) -> A. w e. X ( ( A .+ w ) e. S <-> ( w .+ A ) e. S ) ) |
| 45 | 5 | elnmz | |- ( A e. N <-> ( A e. X /\ A. w e. X ( ( A .+ w ) e. S <-> ( w .+ A ) e. S ) ) ) |
| 46 | 11 44 45 | sylanbrc | |- ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) -> A e. N ) |
| 47 | 10 46 | impbida | |- ( S e. ( SubGrp ` G ) -> ( A e. N <-> ( A e. X /\ S = ran F ) ) ) |