This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conjghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| conjghm.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| conjghm.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| conjghm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) | ||
| Assertion | conjghm | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conjghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | conjghm.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | conjghm.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | conjghm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) | |
| 5 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ Grp ) | |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 7 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 + 𝑥 ) ∈ 𝑋 ) |
| 8 | 7 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 + 𝑥 ) ∈ 𝑋 ) |
| 9 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 10 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 + 𝑥 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) ∈ 𝑋 ) |
| 11 | 6 8 9 10 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) ∈ 𝑋 ) |
| 12 | 11 4 | fmptd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ 𝑋 ) |
| 13 | 5 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 14 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 15 | simprl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) | |
| 16 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 + 𝑦 ) ∈ 𝑋 ) |
| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐴 + 𝑦 ) ∈ 𝑋 ) |
| 18 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 + 𝑦 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 + 𝑦 ) − 𝐴 ) ∈ 𝑋 ) |
| 19 | 13 17 14 18 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑦 ) − 𝐴 ) ∈ 𝑋 ) |
| 20 | simprr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) | |
| 21 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑧 − 𝐴 ) ∈ 𝑋 ) |
| 22 | 13 20 14 21 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 − 𝐴 ) ∈ 𝑋 ) |
| 23 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑧 − 𝐴 ) ∈ 𝑋 ) ) → ( ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + 𝐴 ) + ( 𝑧 − 𝐴 ) ) = ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + ( 𝐴 + ( 𝑧 − 𝐴 ) ) ) ) |
| 24 | 13 19 14 22 23 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + 𝐴 ) + ( 𝑧 − 𝐴 ) ) = ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + ( 𝐴 + ( 𝑧 − 𝐴 ) ) ) ) |
| 25 | 1 2 3 | grpnpcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 + 𝑦 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + 𝐴 ) = ( 𝐴 + 𝑦 ) ) |
| 26 | 13 17 14 25 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + 𝐴 ) = ( 𝐴 + 𝑦 ) ) |
| 27 | 26 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + 𝐴 ) + ( 𝑧 − 𝐴 ) ) = ( ( 𝐴 + 𝑦 ) + ( 𝑧 − 𝐴 ) ) ) |
| 28 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐴 + 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑦 ) + 𝑧 ) − 𝐴 ) = ( ( 𝐴 + 𝑦 ) + ( 𝑧 − 𝐴 ) ) ) |
| 29 | 13 17 20 14 28 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑦 ) + 𝑧 ) − 𝐴 ) = ( ( 𝐴 + 𝑦 ) + ( 𝑧 − 𝐴 ) ) ) |
| 30 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑦 ) + 𝑧 ) = ( 𝐴 + ( 𝑦 + 𝑧 ) ) ) |
| 31 | 13 14 15 20 30 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑦 ) + 𝑧 ) = ( 𝐴 + ( 𝑦 + 𝑧 ) ) ) |
| 32 | 31 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑦 ) + 𝑧 ) − 𝐴 ) = ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) ) |
| 33 | 27 29 32 | 3eqtr2rd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) = ( ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + 𝐴 ) + ( 𝑧 − 𝐴 ) ) ) |
| 34 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑧 ) − 𝐴 ) = ( 𝐴 + ( 𝑧 − 𝐴 ) ) ) |
| 35 | 13 14 20 14 34 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝑧 ) − 𝐴 ) = ( 𝐴 + ( 𝑧 − 𝐴 ) ) ) |
| 36 | 35 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + ( ( 𝐴 + 𝑧 ) − 𝐴 ) ) = ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + ( 𝐴 + ( 𝑧 − 𝐴 ) ) ) ) |
| 37 | 24 33 36 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) = ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + ( ( 𝐴 + 𝑧 ) − 𝐴 ) ) ) |
| 38 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 + 𝑧 ) ∈ 𝑋 ) |
| 39 | 13 15 20 38 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑋 ) |
| 40 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( 𝐴 + 𝑥 ) = ( 𝐴 + ( 𝑦 + 𝑧 ) ) ) | |
| 41 | 40 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) ) |
| 42 | ovex | ⊢ ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) ∈ V | |
| 43 | 41 4 42 | fvmpt | ⊢ ( ( 𝑦 + 𝑧 ) ∈ 𝑋 → ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) ) |
| 44 | 39 43 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐴 + ( 𝑦 + 𝑧 ) ) − 𝐴 ) ) |
| 45 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 + 𝑥 ) = ( 𝐴 + 𝑦 ) ) | |
| 46 | 45 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( ( 𝐴 + 𝑦 ) − 𝐴 ) ) |
| 47 | ovex | ⊢ ( ( 𝐴 + 𝑦 ) − 𝐴 ) ∈ V | |
| 48 | 46 4 47 | fvmpt | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( ( 𝐴 + 𝑦 ) − 𝐴 ) ) |
| 49 | 48 | ad2antrl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) = ( ( 𝐴 + 𝑦 ) − 𝐴 ) ) |
| 50 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 + 𝑥 ) = ( 𝐴 + 𝑧 ) ) | |
| 51 | 50 | oveq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 + 𝑥 ) − 𝐴 ) = ( ( 𝐴 + 𝑧 ) − 𝐴 ) ) |
| 52 | ovex | ⊢ ( ( 𝐴 + 𝑧 ) − 𝐴 ) ∈ V | |
| 53 | 51 4 52 | fvmpt | ⊢ ( 𝑧 ∈ 𝑋 → ( 𝐹 ‘ 𝑧 ) = ( ( 𝐴 + 𝑧 ) − 𝐴 ) ) |
| 54 | 53 | ad2antll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) = ( ( 𝐴 + 𝑧 ) − 𝐴 ) ) |
| 55 | 49 54 | oveq12d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐴 + 𝑦 ) − 𝐴 ) + ( ( 𝐴 + 𝑧 ) − 𝐴 ) ) ) |
| 56 | 37 44 55 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) ) |
| 57 | 1 1 2 2 5 5 12 56 | isghmd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 58 | 5 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 59 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 60 | 1 59 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 61 | 60 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 62 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) | |
| 63 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 64 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑦 + 𝐴 ) ∈ 𝑋 ) |
| 65 | 58 62 63 64 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 + 𝐴 ) ∈ 𝑋 ) |
| 66 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ ( 𝑦 + 𝐴 ) ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) ∈ 𝑋 ) |
| 67 | 58 61 65 66 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) ∈ 𝑋 ) |
| 68 | 5 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 69 | 65 | adantrl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 + 𝐴 ) ∈ 𝑋 ) |
| 70 | 8 | adantrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐴 + 𝑥 ) ∈ 𝑋 ) |
| 71 | 60 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 72 | 1 2 | grplcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑦 + 𝐴 ) ∈ 𝑋 ∧ ( 𝐴 + 𝑥 ) ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐴 + 𝑥 ) ) ↔ ( 𝑦 + 𝐴 ) = ( 𝐴 + 𝑥 ) ) ) |
| 73 | 68 69 70 71 72 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐴 + 𝑥 ) ) ↔ ( 𝑦 + 𝐴 ) = ( 𝐴 + 𝑥 ) ) ) |
| 74 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 75 | 1 2 74 59 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 76 | 75 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 77 | 76 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐴 ) + 𝑥 ) = ( ( 0g ‘ 𝐺 ) + 𝑥 ) ) |
| 78 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 79 | simprl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) | |
| 80 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐴 ) + 𝑥 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐴 + 𝑥 ) ) ) |
| 81 | 68 71 78 79 80 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐴 ) + 𝑥 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐴 + 𝑥 ) ) ) |
| 82 | 1 2 74 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ) |
| 83 | 82 | ad2ant2r | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑥 ) = 𝑥 ) |
| 84 | 77 81 83 | 3eqtr3rd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐴 + 𝑥 ) ) ) |
| 85 | 84 | eqeq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) = 𝑥 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐴 + 𝑥 ) ) ) ) |
| 86 | simprr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) | |
| 87 | 1 2 3 | grpsubadd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐴 + 𝑥 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑥 ) − 𝐴 ) = 𝑦 ↔ ( 𝑦 + 𝐴 ) = ( 𝐴 + 𝑥 ) ) ) |
| 88 | 68 70 78 86 87 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝐴 + 𝑥 ) − 𝐴 ) = 𝑦 ↔ ( 𝑦 + 𝐴 ) = ( 𝐴 + 𝑥 ) ) ) |
| 89 | 73 85 88 | 3bitr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) = 𝑥 ↔ ( ( 𝐴 + 𝑥 ) − 𝐴 ) = 𝑦 ) ) |
| 90 | eqcom | ⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) = 𝑥 ) | |
| 91 | eqcom | ⊢ ( 𝑦 = ( ( 𝐴 + 𝑥 ) − 𝐴 ) ↔ ( ( 𝐴 + 𝑥 ) − 𝐴 ) = 𝑦 ) | |
| 92 | 89 90 91 | 3bitr4g | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝑦 + 𝐴 ) ) ↔ 𝑦 = ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ) |
| 93 | 4 11 67 92 | f1o2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐹 : 𝑋 –1-1-onto→ 𝑋 ) |
| 94 | 57 93 | jca | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑋 ) ) |