This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conjghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| conjghm.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| conjghm.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| conjsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) | ||
| Assertion | conjsubg | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conjghm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | conjghm.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | conjghm.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | conjsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) | |
| 5 | 1 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑋 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
| 7 | df-ima | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) = ran ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) | |
| 8 | resmpt | ⊢ ( 𝑆 ⊆ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ) | |
| 9 | 8 4 | eqtr4di | ⊢ ( 𝑆 ⊆ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) = 𝐹 ) |
| 10 | 9 | rneqd | ⊢ ( 𝑆 ⊆ 𝑋 → ran ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ↾ 𝑆 ) = ran 𝐹 ) |
| 11 | 7 10 | eqtrid | ⊢ ( 𝑆 ⊆ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) = ran 𝐹 ) |
| 12 | 6 11 | syl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) = ran 𝐹 ) |
| 13 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 14 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) | |
| 15 | 1 2 3 14 | conjghm | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
| 16 | 13 15 | sylan | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
| 17 | 16 | simpld | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 18 | simpl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 19 | ghmima | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) ∈ ( 𝐺 GrpHom 𝐺 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 20 | 17 18 19 | syl2anc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 + 𝑥 ) − 𝐴 ) ) “ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 21 | 12 20 | eqeltrrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) |