This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a cofinal map from B to A and another from C to A , then there is also a cofinal map from C to B . Proposition 11.9 of TakeutiZaring p. 102. A limited form of transitivity for the "cof" relation. This is really a lemma for cfcof . (Contributed by Mario Carneiro, 16-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | coftr.1 | ⊢ 𝐻 = ( 𝑡 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) | |
| Assertion | coftr | ⊢ ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ∃ 𝑔 ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coftr.1 | ⊢ 𝐻 = ( 𝑡 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) | |
| 2 | fdm | ⊢ ( 𝑔 : 𝐶 ⟶ 𝐴 → dom 𝑔 = 𝐶 ) | |
| 3 | vex | ⊢ 𝑔 ∈ V | |
| 4 | 3 | dmex | ⊢ dom 𝑔 ∈ V |
| 5 | 2 4 | eqeltrrdi | ⊢ ( 𝑔 : 𝐶 ⟶ 𝐴 → 𝐶 ∈ V ) |
| 6 | fveq2 | ⊢ ( 𝑡 = 𝑤 → ( 𝑔 ‘ 𝑡 ) = ( 𝑔 ‘ 𝑤 ) ) | |
| 7 | 6 | sseq1d | ⊢ ( 𝑡 = 𝑤 → ( ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) ↔ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) ) ) |
| 8 | 7 | rabbidv | ⊢ ( 𝑡 = 𝑤 → { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) } = { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 9 | 8 | inteqd | ⊢ ( 𝑡 = 𝑤 → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) } = ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 10 | 9 | cbvmptv | ⊢ ( 𝑡 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑡 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) = ( 𝑤 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 11 | 1 10 | eqtri | ⊢ 𝐻 = ( 𝑤 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 12 | mptexg | ⊢ ( 𝐶 ∈ V → ( 𝑤 ∈ 𝐶 ↦ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) ∈ V ) | |
| 13 | 11 12 | eqeltrid | ⊢ ( 𝐶 ∈ V → 𝐻 ∈ V ) |
| 14 | 5 13 | syl | ⊢ ( 𝑔 : 𝐶 ⟶ 𝐴 → 𝐻 ∈ V ) |
| 15 | 14 | ad2antrl | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝐻 ∈ V ) |
| 16 | ffn | ⊢ ( 𝑓 : 𝐵 ⟶ 𝐴 → 𝑓 Fn 𝐵 ) | |
| 17 | smodm2 | ⊢ ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) → Ord 𝐵 ) | |
| 18 | 16 17 | sylan | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) → Ord 𝐵 ) |
| 19 | 18 | 3adant3 | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → Ord 𝐵 ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → Ord 𝐵 ) |
| 21 | simpl3 | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) | |
| 22 | simprl | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝑔 : 𝐶 ⟶ 𝐴 ) | |
| 23 | simpl1 | ⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → Ord 𝐵 ) | |
| 24 | simpl2 | ⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) | |
| 25 | ffvelcdm | ⊢ ( ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ 𝑤 ∈ 𝐶 ) → ( 𝑔 ‘ 𝑤 ) ∈ 𝐴 ) | |
| 26 | 25 | 3ad2antl3 | ⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ( 𝑔 ‘ 𝑤 ) ∈ 𝐴 ) |
| 27 | sseq1 | ⊢ ( 𝑥 = ( 𝑔 ‘ 𝑤 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 28 | 27 | rexbidv | ⊢ ( 𝑥 = ( 𝑔 ‘ 𝑤 ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 29 | 28 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ( ( 𝑔 ‘ 𝑤 ) ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 30 | 24 26 29 | sylc | ⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) |
| 31 | ssrab2 | ⊢ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝐵 | |
| 32 | ordsson | ⊢ ( Ord 𝐵 → 𝐵 ⊆ On ) | |
| 33 | 31 32 | sstrid | ⊢ ( Ord 𝐵 → { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ On ) |
| 34 | fveq2 | ⊢ ( 𝑛 = 𝑦 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑦 ) ) | |
| 35 | 34 | sseq2d | ⊢ ( 𝑛 = 𝑦 → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) ↔ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 36 | 35 | rspcev | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑛 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) ) |
| 37 | rabn0 | ⊢ ( { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ≠ ∅ ↔ ∃ 𝑛 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) ) | |
| 38 | 36 37 | sylibr | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) → { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ≠ ∅ ) |
| 39 | oninton | ⊢ ( ( { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ On ∧ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ≠ ∅ ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ On ) | |
| 40 | 33 38 39 | syl2an | ⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ On ) |
| 41 | eloni | ⊢ ( ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ On → Ord ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) | |
| 42 | 40 41 | syl | ⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → Ord ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 43 | simpl | ⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → Ord 𝐵 ) | |
| 44 | 35 | intminss | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝑦 ) |
| 45 | 44 | adantl | ⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝑦 ) |
| 46 | simprl | ⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 47 | ordtr2 | ⊢ ( ( Ord ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∧ Ord 𝐵 ) → ( ( ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) ) | |
| 48 | 47 | imp | ⊢ ( ( ( Ord ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∧ Ord 𝐵 ) ∧ ( ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ⊆ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) |
| 49 | 42 43 45 46 48 | syl22anc | ⊢ ( ( Ord 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) |
| 50 | 49 | rexlimdvaa | ⊢ ( Ord 𝐵 → ( ∃ 𝑦 ∈ 𝐵 ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) ) |
| 51 | 23 30 50 | sylc | ⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) |
| 52 | 51 11 | fmptd | ⊢ ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) → 𝐻 : 𝐶 ⟶ 𝐵 ) |
| 53 | 20 21 22 52 | syl3anc | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝐻 : 𝐶 ⟶ 𝐵 ) |
| 54 | simprr | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) | |
| 55 | simpl1 | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝑓 : 𝐵 ⟶ 𝐴 ) | |
| 56 | ffvelcdm | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝑠 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑠 ) ∈ 𝐴 ) | |
| 57 | sseq1 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑠 ) → ( 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ↔ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) | |
| 58 | 57 | rexbidv | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑠 ) → ( ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
| 59 | 58 | rspccv | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑓 ‘ 𝑠 ) ∈ 𝐴 → ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
| 60 | 56 59 | syl5 | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝑠 ∈ 𝐵 ) → ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
| 61 | 60 | expdimp | ⊢ ( ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → ( 𝑠 ∈ 𝐵 → ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
| 62 | 54 55 61 | syl2anc | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ( 𝑠 ∈ 𝐵 → ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) ) |
| 63 | 55 16 | syl | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → 𝑓 Fn 𝐵 ) |
| 64 | simpl2 | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → Smo 𝑓 ) | |
| 65 | simpr | ⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ∈ 𝐶 ) | |
| 66 | 65 51 | jca | ⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ( 𝑤 ∈ 𝐶 ∧ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) ) |
| 67 | 35 | elrab | ⊢ ( 𝑦 ∈ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ↔ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 68 | sstr2 | ⊢ ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 69 | smoword | ⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑠 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 70 | 69 | biimprd | ⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑠 ⊆ 𝑦 ) ) |
| 71 | 68 70 | syl9r | ⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑠 ⊆ 𝑦 ) ) ) |
| 72 | 71 | expr | ⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑠 ⊆ 𝑦 ) ) ) ) |
| 73 | 72 | com23 | ⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑠 ⊆ 𝑦 ) ) ) ) |
| 74 | 73 | imp4b | ⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) → 𝑠 ⊆ 𝑦 ) ) |
| 75 | 67 74 | biimtrid | ⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ( 𝑦 ∈ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } → 𝑠 ⊆ 𝑦 ) ) |
| 76 | 75 | ralrimiv | ⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∀ 𝑦 ∈ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } 𝑠 ⊆ 𝑦 ) |
| 77 | ssint | ⊢ ( 𝑠 ⊆ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ↔ ∀ 𝑦 ∈ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } 𝑠 ⊆ 𝑦 ) | |
| 78 | 76 77 | sylibr | ⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → 𝑠 ⊆ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 79 | 9 1 | fvmptg | ⊢ ( ( 𝑤 ∈ 𝐶 ∧ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) → ( 𝐻 ‘ 𝑤 ) = ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) |
| 80 | 79 | sseq2d | ⊢ ( ( 𝑤 ∈ 𝐶 ∧ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) → ( 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ↔ 𝑠 ⊆ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ) ) |
| 81 | 78 80 | syl5ibrcom | ⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ( ( 𝑤 ∈ 𝐶 ∧ ∩ { 𝑛 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑤 ) ⊆ ( 𝑓 ‘ 𝑛 ) } ∈ 𝐵 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 82 | 66 81 | syl5 | ⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) ) → ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 83 | 82 | ex | ⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 84 | 83 | com23 | ⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) → ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ 𝑤 ∈ 𝐶 ) → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 85 | 84 | expdimp | ⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ) → ( 𝑤 ∈ 𝐶 → ( ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 86 | 85 | reximdvai | ⊢ ( ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ∧ ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ) → ( ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 87 | 86 | ancoms | ⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ 𝑠 ∈ 𝐵 ) ) → ( ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 88 | 87 | expr | ⊢ ( ( ( Ord 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ∧ 𝑔 : 𝐶 ⟶ 𝐴 ) ∧ ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ) → ( 𝑠 ∈ 𝐵 → ( ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 89 | 20 21 22 63 64 88 | syl32anc | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ( 𝑠 ∈ 𝐵 → ( ∃ 𝑤 ∈ 𝐶 ( 𝑓 ‘ 𝑠 ) ⊆ ( 𝑔 ‘ 𝑤 ) → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 90 | 62 89 | mpdd | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ( 𝑠 ∈ 𝐵 → ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 91 | 90 | ralrimiv | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) |
| 92 | feq1 | ⊢ ( ℎ = 𝐻 → ( ℎ : 𝐶 ⟶ 𝐵 ↔ 𝐻 : 𝐶 ⟶ 𝐵 ) ) | |
| 93 | fveq1 | ⊢ ( ℎ = 𝐻 → ( ℎ ‘ 𝑤 ) = ( 𝐻 ‘ 𝑤 ) ) | |
| 94 | 93 | sseq2d | ⊢ ( ℎ = 𝐻 → ( 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ↔ 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 95 | 94 | rexbidv | ⊢ ( ℎ = 𝐻 → ( ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 96 | 95 | ralbidv | ⊢ ( ℎ = 𝐻 → ( ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ↔ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) |
| 97 | 92 96 | anbi12d | ⊢ ( ℎ = 𝐻 → ( ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ↔ ( 𝐻 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 98 | 97 | spcegv | ⊢ ( 𝐻 ∈ V → ( ( 𝐻 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) ) |
| 99 | 98 | 3impib | ⊢ ( ( 𝐻 ∈ V ∧ 𝐻 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( 𝐻 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) |
| 100 | 15 53 91 99 | syl3anc | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) |
| 101 | 100 | ex | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) ) |
| 102 | 101 | exlimdv | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ∃ 𝑔 ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) ) |
| 103 | 102 | exlimiv | ⊢ ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ∃ 𝑔 ( 𝑔 : 𝐶 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐶 𝑧 ⊆ ( 𝑔 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑠 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑠 ⊆ ( ℎ ‘ 𝑤 ) ) ) ) |