This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoword | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ⊆ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ⊆ ( 𝐹 ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smoord | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐷 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) ) | |
| 2 | 1 | notbid | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ¬ 𝐷 ∈ 𝐶 ↔ ¬ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) ) |
| 3 | 2 | ancom2s | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ¬ 𝐷 ∈ 𝐶 ↔ ¬ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) ) |
| 4 | smodm2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → Ord 𝐴 ) | |
| 5 | simprl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → 𝐶 ∈ 𝐴 ) | |
| 6 | ordelord | ⊢ ( ( Ord 𝐴 ∧ 𝐶 ∈ 𝐴 ) → Ord 𝐶 ) | |
| 7 | 4 5 6 | syl2an2r | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → Ord 𝐶 ) |
| 8 | simprr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → 𝐷 ∈ 𝐴 ) | |
| 9 | ordelord | ⊢ ( ( Ord 𝐴 ∧ 𝐷 ∈ 𝐴 ) → Ord 𝐷 ) | |
| 10 | 4 8 9 | syl2an2r | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → Ord 𝐷 ) |
| 11 | ordtri1 | ⊢ ( ( Ord 𝐶 ∧ Ord 𝐷 ) → ( 𝐶 ⊆ 𝐷 ↔ ¬ 𝐷 ∈ 𝐶 ) ) | |
| 12 | 7 10 11 | syl2anc | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ⊆ 𝐷 ↔ ¬ 𝐷 ∈ 𝐶 ) ) |
| 13 | simplr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → Smo 𝐹 ) | |
| 14 | smofvon2 | ⊢ ( Smo 𝐹 → ( 𝐹 ‘ 𝐶 ) ∈ On ) | |
| 15 | eloni | ⊢ ( ( 𝐹 ‘ 𝐶 ) ∈ On → Ord ( 𝐹 ‘ 𝐶 ) ) | |
| 16 | 13 14 15 | 3syl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → Ord ( 𝐹 ‘ 𝐶 ) ) |
| 17 | smofvon2 | ⊢ ( Smo 𝐹 → ( 𝐹 ‘ 𝐷 ) ∈ On ) | |
| 18 | eloni | ⊢ ( ( 𝐹 ‘ 𝐷 ) ∈ On → Ord ( 𝐹 ‘ 𝐷 ) ) | |
| 19 | 13 17 18 | 3syl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → Ord ( 𝐹 ‘ 𝐷 ) ) |
| 20 | ordtri1 | ⊢ ( ( Ord ( 𝐹 ‘ 𝐶 ) ∧ Ord ( 𝐹 ‘ 𝐷 ) ) → ( ( 𝐹 ‘ 𝐶 ) ⊆ ( 𝐹 ‘ 𝐷 ) ↔ ¬ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) ) | |
| 21 | 16 19 20 | syl2anc | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝐶 ) ⊆ ( 𝐹 ‘ 𝐷 ) ↔ ¬ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) ) |
| 22 | 3 12 21 | 3bitr4d | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ⊆ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ⊆ ( 𝐹 ‘ 𝐷 ) ) ) |