This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | intminss.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | intminss | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intminss.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | elrab | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |
| 3 | intss1 | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } → ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ⊆ 𝐴 ) | |
| 4 | 2 3 | sylbir | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ⊆ 𝐴 ) |