This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnso | ⊢ ∃ 𝑥 𝑥 Or ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | ⊢ < Or ℝ | |
| 2 | eqid | ⊢ { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } = { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } | |
| 3 | f1oiso | ⊢ ( ( 𝑎 : ℝ –1-1-onto→ ℂ ∧ { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } = { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ) → 𝑎 Isom < , { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ( ℝ , ℂ ) ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝑎 : ℝ –1-1-onto→ ℂ → 𝑎 Isom < , { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ( ℝ , ℂ ) ) |
| 5 | isoso | ⊢ ( 𝑎 Isom < , { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ( ℝ , ℂ ) → ( < Or ℝ ↔ { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } Or ℂ ) ) | |
| 6 | soinxp | ⊢ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } Or ℂ ↔ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ ) | |
| 7 | 5 6 | bitrdi | ⊢ ( 𝑎 Isom < , { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ( ℝ , ℂ ) → ( < Or ℝ ↔ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝑎 : ℝ –1-1-onto→ ℂ → ( < Or ℝ ↔ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ ) ) |
| 9 | 1 8 | mpbii | ⊢ ( 𝑎 : ℝ –1-1-onto→ ℂ → ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ ) |
| 10 | cnex | ⊢ ℂ ∈ V | |
| 11 | 10 10 | xpex | ⊢ ( ℂ × ℂ ) ∈ V |
| 12 | 11 | inex2 | ⊢ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) ∈ V |
| 13 | soeq1 | ⊢ ( 𝑥 = ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) → ( 𝑥 Or ℂ ↔ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ ) ) | |
| 14 | 12 13 | spcev | ⊢ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ∈ ℝ ∃ 𝑒 ∈ ℝ ( ( 𝑏 = ( 𝑎 ‘ 𝑑 ) ∧ 𝑐 = ( 𝑎 ‘ 𝑒 ) ) ∧ 𝑑 < 𝑒 ) } ∩ ( ℂ × ℂ ) ) Or ℂ → ∃ 𝑥 𝑥 Or ℂ ) |
| 15 | 9 14 | syl | ⊢ ( 𝑎 : ℝ –1-1-onto→ ℂ → ∃ 𝑥 𝑥 Or ℂ ) |
| 16 | rpnnen | ⊢ ℝ ≈ 𝒫 ℕ | |
| 17 | cpnnen | ⊢ ℂ ≈ 𝒫 ℕ | |
| 18 | 16 17 | entr4i | ⊢ ℝ ≈ ℂ |
| 19 | bren | ⊢ ( ℝ ≈ ℂ ↔ ∃ 𝑎 𝑎 : ℝ –1-1-onto→ ℂ ) | |
| 20 | 18 19 | mpbi | ⊢ ∃ 𝑎 𝑎 : ℝ –1-1-onto→ ℂ |
| 21 | 15 20 | exlimiiv | ⊢ ∃ 𝑥 𝑥 Or ℂ |