This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex numbers can be linearly ordered. (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnso | |- E. x x Or CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | |- < Or RR |
|
| 2 | eqid | |- { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } = { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } |
|
| 3 | f1oiso | |- ( ( a : RR -1-1-onto-> CC /\ { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } = { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } ) -> a Isom < , { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } ( RR , CC ) ) |
|
| 4 | 2 3 | mpan2 | |- ( a : RR -1-1-onto-> CC -> a Isom < , { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } ( RR , CC ) ) |
| 5 | isoso | |- ( a Isom < , { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } ( RR , CC ) -> ( < Or RR <-> { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } Or CC ) ) |
|
| 6 | soinxp | |- ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } Or CC <-> ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) Or CC ) |
|
| 7 | 5 6 | bitrdi | |- ( a Isom < , { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } ( RR , CC ) -> ( < Or RR <-> ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) Or CC ) ) |
| 8 | 4 7 | syl | |- ( a : RR -1-1-onto-> CC -> ( < Or RR <-> ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) Or CC ) ) |
| 9 | 1 8 | mpbii | |- ( a : RR -1-1-onto-> CC -> ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) Or CC ) |
| 10 | cnex | |- CC e. _V |
|
| 11 | 10 10 | xpex | |- ( CC X. CC ) e. _V |
| 12 | 11 | inex2 | |- ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) e. _V |
| 13 | soeq1 | |- ( x = ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) -> ( x Or CC <-> ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) Or CC ) ) |
|
| 14 | 12 13 | spcev | |- ( ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) Or CC -> E. x x Or CC ) |
| 15 | 9 14 | syl | |- ( a : RR -1-1-onto-> CC -> E. x x Or CC ) |
| 16 | rpnnen | |- RR ~~ ~P NN |
|
| 17 | cpnnen | |- CC ~~ ~P NN |
|
| 18 | 16 17 | entr4i | |- RR ~~ CC |
| 19 | bren | |- ( RR ~~ CC <-> E. a a : RR -1-1-onto-> CC ) |
|
| 20 | 18 19 | mpbi | |- E. a a : RR -1-1-onto-> CC |
| 21 | 15 20 | exlimiiv | |- E. x x Or CC |