This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | soeq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poeq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Po 𝐴 ↔ 𝑆 Po 𝐴 ) ) | |
| 2 | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑆 𝑦 ) ) | |
| 3 | biidd | ⊢ ( 𝑅 = 𝑆 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 4 | breq | ⊢ ( 𝑅 = 𝑆 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑆 𝑥 ) ) | |
| 5 | 2 3 4 | 3orbi123d | ⊢ ( 𝑅 = 𝑆 → ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑆 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑆 𝑥 ) ) ) |
| 6 | 5 | 2ralbidv | ⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑆 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑆 𝑥 ) ) ) |
| 7 | 1 6 | anbi12d | ⊢ ( 𝑅 = 𝑆 → ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ↔ ( 𝑆 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑆 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑆 𝑥 ) ) ) ) |
| 8 | df-so | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 9 | df-so | ⊢ ( 𝑆 Or 𝐴 ↔ ( 𝑆 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑆 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑆 𝑥 ) ) ) | |
| 10 | 7 8 9 | 3bitr4g | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴 ) ) |