This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldmulg | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 0 ( .g ‘ ℂfld ) 𝐵 ) ) | |
| 2 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 · 𝐵 ) = ( 0 · 𝐵 ) ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( 0 ( .g ‘ ℂfld ) 𝐵 ) = ( 0 · 𝐵 ) ) ) |
| 4 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) ) | |
| 5 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐵 ) = ( 𝑦 · 𝐵 ) ) | |
| 6 | 4 5 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) ) ) |
| 7 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) ) | |
| 8 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) ) |
| 10 | oveq1 | ⊢ ( 𝑥 = - 𝑦 → ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( - 𝑦 ( .g ‘ ℂfld ) 𝐵 ) ) | |
| 11 | oveq1 | ⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · 𝐵 ) = ( - 𝑦 · 𝐵 ) ) | |
| 12 | 10 11 | eqeq12d | ⊢ ( 𝑥 = - 𝑦 → ( ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( - 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( - 𝑦 · 𝐵 ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) ) | |
| 14 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 · 𝐵 ) = ( 𝐴 · 𝐵 ) ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) ) |
| 16 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 17 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 18 | eqid | ⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) | |
| 19 | 16 17 18 | mulg0 | ⊢ ( 𝐵 ∈ ℂ → ( 0 ( .g ‘ ℂfld ) 𝐵 ) = 0 ) |
| 20 | mul02 | ⊢ ( 𝐵 ∈ ℂ → ( 0 · 𝐵 ) = 0 ) | |
| 21 | 19 20 | eqtr4d | ⊢ ( 𝐵 ∈ ℂ → ( 0 ( .g ‘ ℂfld ) 𝐵 ) = ( 0 · 𝐵 ) ) |
| 22 | oveq1 | ⊢ ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) + 𝐵 ) = ( ( 𝑦 · 𝐵 ) + 𝐵 ) ) | |
| 23 | cnring | ⊢ ℂfld ∈ Ring | |
| 24 | ringmnd | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) | |
| 25 | 23 24 | ax-mp | ⊢ ℂfld ∈ Mnd |
| 26 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 27 | 16 18 26 | mulgnn0p1 | ⊢ ( ( ℂfld ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) + 𝐵 ) ) |
| 28 | 25 27 | mp3an1 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) + 𝐵 ) ) |
| 29 | nn0cn | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℂ ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
| 31 | simpr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 32 | 30 31 | adddirp1d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑦 + 1 ) · 𝐵 ) = ( ( 𝑦 · 𝐵 ) + 𝐵 ) ) |
| 33 | 28 32 | eqeq12d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ↔ ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) + 𝐵 ) = ( ( 𝑦 · 𝐵 ) + 𝐵 ) ) ) |
| 34 | 22 33 | imbitrrid | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) ) |
| 35 | 34 | expcom | ⊢ ( 𝐵 ∈ ℂ → ( 𝑦 ∈ ℕ0 → ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) ) ) |
| 36 | fveq2 | ⊢ ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( invg ‘ ℂfld ) ‘ ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) ) = ( ( invg ‘ ℂfld ) ‘ ( 𝑦 · 𝐵 ) ) ) | |
| 37 | eqid | ⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) | |
| 38 | 16 18 37 | mulgnegnn | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( - 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( ( invg ‘ ℂfld ) ‘ ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) ) ) |
| 39 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 40 | mulneg1 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝑦 · 𝐵 ) = - ( 𝑦 · 𝐵 ) ) | |
| 41 | 39 40 | sylan | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( - 𝑦 · 𝐵 ) = - ( 𝑦 · 𝐵 ) ) |
| 42 | mulcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑦 · 𝐵 ) ∈ ℂ ) | |
| 43 | 39 42 | sylan | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( 𝑦 · 𝐵 ) ∈ ℂ ) |
| 44 | cnfldneg | ⊢ ( ( 𝑦 · 𝐵 ) ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ ( 𝑦 · 𝐵 ) ) = - ( 𝑦 · 𝐵 ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( ( invg ‘ ℂfld ) ‘ ( 𝑦 · 𝐵 ) ) = - ( 𝑦 · 𝐵 ) ) |
| 46 | 41 45 | eqtr4d | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( - 𝑦 · 𝐵 ) = ( ( invg ‘ ℂfld ) ‘ ( 𝑦 · 𝐵 ) ) ) |
| 47 | 38 46 | eqeq12d | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( ( - 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( - 𝑦 · 𝐵 ) ↔ ( ( invg ‘ ℂfld ) ‘ ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) ) = ( ( invg ‘ ℂfld ) ‘ ( 𝑦 · 𝐵 ) ) ) ) |
| 48 | 36 47 | imbitrrid | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) → ( - 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( - 𝑦 · 𝐵 ) ) ) |
| 49 | 48 | expcom | ⊢ ( 𝐵 ∈ ℂ → ( 𝑦 ∈ ℕ → ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) → ( - 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( - 𝑦 · 𝐵 ) ) ) ) |
| 50 | 3 6 9 12 15 21 35 49 | zindd | ⊢ ( 𝐵 ∈ ℂ → ( 𝐴 ∈ ℤ → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) ) |
| 51 | 50 | impcom | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |