This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldmulg | |- ( ( A e. ZZ /\ B e. CC ) -> ( A ( .g ` CCfld ) B ) = ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( x = 0 -> ( x ( .g ` CCfld ) B ) = ( 0 ( .g ` CCfld ) B ) ) |
|
| 2 | oveq1 | |- ( x = 0 -> ( x x. B ) = ( 0 x. B ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( x = 0 -> ( ( x ( .g ` CCfld ) B ) = ( x x. B ) <-> ( 0 ( .g ` CCfld ) B ) = ( 0 x. B ) ) ) |
| 4 | oveq1 | |- ( x = y -> ( x ( .g ` CCfld ) B ) = ( y ( .g ` CCfld ) B ) ) |
|
| 5 | oveq1 | |- ( x = y -> ( x x. B ) = ( y x. B ) ) |
|
| 6 | 4 5 | eqeq12d | |- ( x = y -> ( ( x ( .g ` CCfld ) B ) = ( x x. B ) <-> ( y ( .g ` CCfld ) B ) = ( y x. B ) ) ) |
| 7 | oveq1 | |- ( x = ( y + 1 ) -> ( x ( .g ` CCfld ) B ) = ( ( y + 1 ) ( .g ` CCfld ) B ) ) |
|
| 8 | oveq1 | |- ( x = ( y + 1 ) -> ( x x. B ) = ( ( y + 1 ) x. B ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( x = ( y + 1 ) -> ( ( x ( .g ` CCfld ) B ) = ( x x. B ) <-> ( ( y + 1 ) ( .g ` CCfld ) B ) = ( ( y + 1 ) x. B ) ) ) |
| 10 | oveq1 | |- ( x = -u y -> ( x ( .g ` CCfld ) B ) = ( -u y ( .g ` CCfld ) B ) ) |
|
| 11 | oveq1 | |- ( x = -u y -> ( x x. B ) = ( -u y x. B ) ) |
|
| 12 | 10 11 | eqeq12d | |- ( x = -u y -> ( ( x ( .g ` CCfld ) B ) = ( x x. B ) <-> ( -u y ( .g ` CCfld ) B ) = ( -u y x. B ) ) ) |
| 13 | oveq1 | |- ( x = A -> ( x ( .g ` CCfld ) B ) = ( A ( .g ` CCfld ) B ) ) |
|
| 14 | oveq1 | |- ( x = A -> ( x x. B ) = ( A x. B ) ) |
|
| 15 | 13 14 | eqeq12d | |- ( x = A -> ( ( x ( .g ` CCfld ) B ) = ( x x. B ) <-> ( A ( .g ` CCfld ) B ) = ( A x. B ) ) ) |
| 16 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 17 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 18 | eqid | |- ( .g ` CCfld ) = ( .g ` CCfld ) |
|
| 19 | 16 17 18 | mulg0 | |- ( B e. CC -> ( 0 ( .g ` CCfld ) B ) = 0 ) |
| 20 | mul02 | |- ( B e. CC -> ( 0 x. B ) = 0 ) |
|
| 21 | 19 20 | eqtr4d | |- ( B e. CC -> ( 0 ( .g ` CCfld ) B ) = ( 0 x. B ) ) |
| 22 | oveq1 | |- ( ( y ( .g ` CCfld ) B ) = ( y x. B ) -> ( ( y ( .g ` CCfld ) B ) + B ) = ( ( y x. B ) + B ) ) |
|
| 23 | cnring | |- CCfld e. Ring |
|
| 24 | ringmnd | |- ( CCfld e. Ring -> CCfld e. Mnd ) |
|
| 25 | 23 24 | ax-mp | |- CCfld e. Mnd |
| 26 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 27 | 16 18 26 | mulgnn0p1 | |- ( ( CCfld e. Mnd /\ y e. NN0 /\ B e. CC ) -> ( ( y + 1 ) ( .g ` CCfld ) B ) = ( ( y ( .g ` CCfld ) B ) + B ) ) |
| 28 | 25 27 | mp3an1 | |- ( ( y e. NN0 /\ B e. CC ) -> ( ( y + 1 ) ( .g ` CCfld ) B ) = ( ( y ( .g ` CCfld ) B ) + B ) ) |
| 29 | nn0cn | |- ( y e. NN0 -> y e. CC ) |
|
| 30 | 29 | adantr | |- ( ( y e. NN0 /\ B e. CC ) -> y e. CC ) |
| 31 | simpr | |- ( ( y e. NN0 /\ B e. CC ) -> B e. CC ) |
|
| 32 | 30 31 | adddirp1d | |- ( ( y e. NN0 /\ B e. CC ) -> ( ( y + 1 ) x. B ) = ( ( y x. B ) + B ) ) |
| 33 | 28 32 | eqeq12d | |- ( ( y e. NN0 /\ B e. CC ) -> ( ( ( y + 1 ) ( .g ` CCfld ) B ) = ( ( y + 1 ) x. B ) <-> ( ( y ( .g ` CCfld ) B ) + B ) = ( ( y x. B ) + B ) ) ) |
| 34 | 22 33 | imbitrrid | |- ( ( y e. NN0 /\ B e. CC ) -> ( ( y ( .g ` CCfld ) B ) = ( y x. B ) -> ( ( y + 1 ) ( .g ` CCfld ) B ) = ( ( y + 1 ) x. B ) ) ) |
| 35 | 34 | expcom | |- ( B e. CC -> ( y e. NN0 -> ( ( y ( .g ` CCfld ) B ) = ( y x. B ) -> ( ( y + 1 ) ( .g ` CCfld ) B ) = ( ( y + 1 ) x. B ) ) ) ) |
| 36 | fveq2 | |- ( ( y ( .g ` CCfld ) B ) = ( y x. B ) -> ( ( invg ` CCfld ) ` ( y ( .g ` CCfld ) B ) ) = ( ( invg ` CCfld ) ` ( y x. B ) ) ) |
|
| 37 | eqid | |- ( invg ` CCfld ) = ( invg ` CCfld ) |
|
| 38 | 16 18 37 | mulgnegnn | |- ( ( y e. NN /\ B e. CC ) -> ( -u y ( .g ` CCfld ) B ) = ( ( invg ` CCfld ) ` ( y ( .g ` CCfld ) B ) ) ) |
| 39 | nncn | |- ( y e. NN -> y e. CC ) |
|
| 40 | mulneg1 | |- ( ( y e. CC /\ B e. CC ) -> ( -u y x. B ) = -u ( y x. B ) ) |
|
| 41 | 39 40 | sylan | |- ( ( y e. NN /\ B e. CC ) -> ( -u y x. B ) = -u ( y x. B ) ) |
| 42 | mulcl | |- ( ( y e. CC /\ B e. CC ) -> ( y x. B ) e. CC ) |
|
| 43 | 39 42 | sylan | |- ( ( y e. NN /\ B e. CC ) -> ( y x. B ) e. CC ) |
| 44 | cnfldneg | |- ( ( y x. B ) e. CC -> ( ( invg ` CCfld ) ` ( y x. B ) ) = -u ( y x. B ) ) |
|
| 45 | 43 44 | syl | |- ( ( y e. NN /\ B e. CC ) -> ( ( invg ` CCfld ) ` ( y x. B ) ) = -u ( y x. B ) ) |
| 46 | 41 45 | eqtr4d | |- ( ( y e. NN /\ B e. CC ) -> ( -u y x. B ) = ( ( invg ` CCfld ) ` ( y x. B ) ) ) |
| 47 | 38 46 | eqeq12d | |- ( ( y e. NN /\ B e. CC ) -> ( ( -u y ( .g ` CCfld ) B ) = ( -u y x. B ) <-> ( ( invg ` CCfld ) ` ( y ( .g ` CCfld ) B ) ) = ( ( invg ` CCfld ) ` ( y x. B ) ) ) ) |
| 48 | 36 47 | imbitrrid | |- ( ( y e. NN /\ B e. CC ) -> ( ( y ( .g ` CCfld ) B ) = ( y x. B ) -> ( -u y ( .g ` CCfld ) B ) = ( -u y x. B ) ) ) |
| 49 | 48 | expcom | |- ( B e. CC -> ( y e. NN -> ( ( y ( .g ` CCfld ) B ) = ( y x. B ) -> ( -u y ( .g ` CCfld ) B ) = ( -u y x. B ) ) ) ) |
| 50 | 3 6 9 12 15 21 35 49 | zindd | |- ( B e. CC -> ( A e. ZZ -> ( A ( .g ` CCfld ) B ) = ( A x. B ) ) ) |
| 51 | 50 | impcom | |- ( ( A e. ZZ /\ B e. CC ) -> ( A ( .g ` CCfld ) B ) = ( A x. B ) ) |