This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldexp | |- ( ( A e. CC /\ B e. NN0 ) -> ( B ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( x = 0 -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( 0 ( .g ` ( mulGrp ` CCfld ) ) A ) ) |
|
| 2 | oveq2 | |- ( x = 0 -> ( A ^ x ) = ( A ^ 0 ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( x = 0 -> ( ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) <-> ( 0 ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ 0 ) ) ) |
| 4 | 3 | imbi2d | |- ( x = 0 -> ( ( A e. CC -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) ) <-> ( A e. CC -> ( 0 ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ 0 ) ) ) ) |
| 5 | oveq1 | |- ( x = y -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( y ( .g ` ( mulGrp ` CCfld ) ) A ) ) |
|
| 6 | oveq2 | |- ( x = y -> ( A ^ x ) = ( A ^ y ) ) |
|
| 7 | 5 6 | eqeq12d | |- ( x = y -> ( ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) <-> ( y ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ y ) ) ) |
| 8 | 7 | imbi2d | |- ( x = y -> ( ( A e. CC -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) ) <-> ( A e. CC -> ( y ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ y ) ) ) ) |
| 9 | oveq1 | |- ( x = ( y + 1 ) -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) ) |
|
| 10 | oveq2 | |- ( x = ( y + 1 ) -> ( A ^ x ) = ( A ^ ( y + 1 ) ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( x = ( y + 1 ) -> ( ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) <-> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( y + 1 ) ) ) ) |
| 12 | 11 | imbi2d | |- ( x = ( y + 1 ) -> ( ( A e. CC -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) ) <-> ( A e. CC -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( y + 1 ) ) ) ) ) |
| 13 | oveq1 | |- ( x = B -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( B ( .g ` ( mulGrp ` CCfld ) ) A ) ) |
|
| 14 | oveq2 | |- ( x = B -> ( A ^ x ) = ( A ^ B ) ) |
|
| 15 | 13 14 | eqeq12d | |- ( x = B -> ( ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) <-> ( B ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ B ) ) ) |
| 16 | 15 | imbi2d | |- ( x = B -> ( ( A e. CC -> ( x ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ x ) ) <-> ( A e. CC -> ( B ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ B ) ) ) ) |
| 17 | eqid | |- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
|
| 18 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 19 | 17 18 | mgpbas | |- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 20 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 21 | 17 20 | ringidval | |- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
| 22 | eqid | |- ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) |
|
| 23 | 19 21 22 | mulg0 | |- ( A e. CC -> ( 0 ( .g ` ( mulGrp ` CCfld ) ) A ) = 1 ) |
| 24 | exp0 | |- ( A e. CC -> ( A ^ 0 ) = 1 ) |
|
| 25 | 23 24 | eqtr4d | |- ( A e. CC -> ( 0 ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ 0 ) ) |
| 26 | oveq1 | |- ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ y ) -> ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) x. A ) = ( ( A ^ y ) x. A ) ) |
|
| 27 | cnring | |- CCfld e. Ring |
|
| 28 | 17 | ringmgp | |- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
| 29 | 27 28 | ax-mp | |- ( mulGrp ` CCfld ) e. Mnd |
| 30 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 31 | 17 30 | mgpplusg | |- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 32 | 19 22 31 | mulgnn0p1 | |- ( ( ( mulGrp ` CCfld ) e. Mnd /\ y e. NN0 /\ A e. CC ) -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) x. A ) ) |
| 33 | 29 32 | mp3an1 | |- ( ( y e. NN0 /\ A e. CC ) -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) x. A ) ) |
| 34 | 33 | ancoms | |- ( ( A e. CC /\ y e. NN0 ) -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) x. A ) ) |
| 35 | expp1 | |- ( ( A e. CC /\ y e. NN0 ) -> ( A ^ ( y + 1 ) ) = ( ( A ^ y ) x. A ) ) |
|
| 36 | 34 35 | eqeq12d | |- ( ( A e. CC /\ y e. NN0 ) -> ( ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( y + 1 ) ) <-> ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) x. A ) = ( ( A ^ y ) x. A ) ) ) |
| 37 | 26 36 | imbitrrid | |- ( ( A e. CC /\ y e. NN0 ) -> ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ y ) -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( y + 1 ) ) ) ) |
| 38 | 37 | expcom | |- ( y e. NN0 -> ( A e. CC -> ( ( y ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ y ) -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( y + 1 ) ) ) ) ) |
| 39 | 38 | a2d | |- ( y e. NN0 -> ( ( A e. CC -> ( y ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ y ) ) -> ( A e. CC -> ( ( y + 1 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( y + 1 ) ) ) ) ) |
| 40 | 4 8 12 16 25 39 | nn0ind | |- ( B e. NN0 -> ( A e. CC -> ( B ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ B ) ) ) |
| 41 | 40 | impcom | |- ( ( A e. CC /\ B e. NN0 ) -> ( B ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ B ) ) |