This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex numbers form a *-ring. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnsrng | ⊢ ℂfld ∈ *-Ring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 2 | 1 | a1i | ⊢ ( ⊤ → ℂ = ( Base ‘ ℂfld ) ) |
| 3 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 4 | 3 | a1i | ⊢ ( ⊤ → + = ( +g ‘ ℂfld ) ) |
| 5 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 6 | 5 | a1i | ⊢ ( ⊤ → · = ( .r ‘ ℂfld ) ) |
| 7 | cnfldcj | ⊢ ∗ = ( *𝑟 ‘ ℂfld ) | |
| 8 | 7 | a1i | ⊢ ( ⊤ → ∗ = ( *𝑟 ‘ ℂfld ) ) |
| 9 | cnring | ⊢ ℂfld ∈ Ring | |
| 10 | 9 | a1i | ⊢ ( ⊤ → ℂfld ∈ Ring ) |
| 11 | cjcl | ⊢ ( 𝑥 ∈ ℂ → ( ∗ ‘ 𝑥 ) ∈ ℂ ) | |
| 12 | 11 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( ∗ ‘ 𝑥 ) ∈ ℂ ) |
| 13 | cjadd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) ) | |
| 14 | 13 | 3adant1 | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) ) |
| 15 | mulcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) | |
| 16 | 15 | fveq2d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ∗ ‘ ( 𝑦 · 𝑥 ) ) ) |
| 17 | cjmul | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ∗ ‘ ( 𝑦 · 𝑥 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ) | |
| 18 | 17 | ancoms | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑦 · 𝑥 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ) |
| 19 | 16 18 | eqtrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ) |
| 20 | 19 | 3adant1 | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ) |
| 21 | cjcj | ⊢ ( 𝑥 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = 𝑥 ) | |
| 22 | 21 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = 𝑥 ) |
| 23 | 2 4 6 8 10 12 14 20 22 | issrngd | ⊢ ( ⊤ → ℂfld ∈ *-Ring ) |
| 24 | 23 | mptru | ⊢ ℂfld ∈ *-Ring |