This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compactness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009) (Proof shortened by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cncmp.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| Assertion | cncmp | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncmp.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 2 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 3 | 2 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Top ) |
| 4 | elpwi | ⊢ ( 𝑢 ∈ 𝒫 𝐾 → 𝑢 ⊆ 𝐾 ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → 𝐽 ∈ Comp ) | |
| 6 | simpl3 | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 7 | simprl | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → 𝑢 ⊆ 𝐾 ) | |
| 8 | 7 | sselda | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → 𝑦 ∈ 𝐾 ) |
| 9 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑦 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) | |
| 10 | 6 8 9 | syl2an2r | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
| 11 | 10 | fmpttd | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) : 𝑢 ⟶ 𝐽 ) |
| 12 | 11 | frnd | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ 𝐽 ) |
| 13 | simprr | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → 𝑌 = ∪ 𝑢 ) | |
| 14 | 13 | imaeq2d | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ( ◡ 𝐹 “ 𝑌 ) = ( ◡ 𝐹 “ ∪ 𝑢 ) ) |
| 15 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 16 | 15 1 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 17 | 6 16 | syl | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 18 | fimacnv | ⊢ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 → ( ◡ 𝐹 “ 𝑌 ) = ∪ 𝐽 ) | |
| 19 | 17 18 | syl | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ( ◡ 𝐹 “ 𝑌 ) = ∪ 𝐽 ) |
| 20 | 10 | ralrimiva | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∀ 𝑦 ∈ 𝑢 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
| 21 | dfiun2g | ⊢ ( ∀ 𝑦 ∈ 𝑢 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∪ 𝑦 ∈ 𝑢 ( ◡ 𝐹 “ 𝑦 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑢 𝑥 = ( ◡ 𝐹 “ 𝑦 ) } ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∪ 𝑦 ∈ 𝑢 ( ◡ 𝐹 “ 𝑦 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑢 𝑥 = ( ◡ 𝐹 “ 𝑦 ) } ) |
| 23 | imauni | ⊢ ( ◡ 𝐹 “ ∪ 𝑢 ) = ∪ 𝑦 ∈ 𝑢 ( ◡ 𝐹 “ 𝑦 ) | |
| 24 | eqid | ⊢ ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) = ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) | |
| 25 | 24 | rnmpt | ⊢ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑢 𝑥 = ( ◡ 𝐹 “ 𝑦 ) } |
| 26 | 25 | unieqi | ⊢ ∪ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑢 𝑥 = ( ◡ 𝐹 “ 𝑦 ) } |
| 27 | 22 23 26 | 3eqtr4g | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ( ◡ 𝐹 “ ∪ 𝑢 ) = ∪ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 28 | 14 19 27 | 3eqtr3d | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∪ 𝐽 = ∪ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 29 | 15 | cmpcov | ⊢ ( ( 𝐽 ∈ Comp ∧ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) → ∃ 𝑠 ∈ ( 𝒫 ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∩ Fin ) ∪ 𝐽 = ∪ 𝑠 ) |
| 30 | 5 12 28 29 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∃ 𝑠 ∈ ( 𝒫 ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∩ Fin ) ∪ 𝐽 = ∪ 𝑠 ) |
| 31 | elfpw | ⊢ ( 𝑠 ∈ ( 𝒫 ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∩ Fin ) ↔ ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ) | |
| 32 | simprll | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) | |
| 33 | 32 | sselda | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) ∧ 𝑐 ∈ 𝑠 ) → 𝑐 ∈ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 34 | simpll2 | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 35 | elssuni | ⊢ ( 𝑦 ∈ 𝐾 → 𝑦 ⊆ ∪ 𝐾 ) | |
| 36 | 35 1 | sseqtrrdi | ⊢ ( 𝑦 ∈ 𝐾 → 𝑦 ⊆ 𝑌 ) |
| 37 | 8 36 | syl | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → 𝑦 ⊆ 𝑌 ) |
| 38 | foimacnv | ⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑦 ⊆ 𝑌 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) | |
| 39 | 34 37 38 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) |
| 40 | simpr | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → 𝑦 ∈ 𝑢 ) | |
| 41 | 39 40 | eqeltrd | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ∈ 𝑢 ) |
| 42 | 41 | ralrimiva | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∀ 𝑦 ∈ 𝑢 ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ∈ 𝑢 ) |
| 43 | imaeq2 | ⊢ ( 𝑐 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝐹 “ 𝑐 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) | |
| 44 | 43 | eleq1d | ⊢ ( 𝑐 = ( ◡ 𝐹 “ 𝑦 ) → ( ( 𝐹 “ 𝑐 ) ∈ 𝑢 ↔ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ∈ 𝑢 ) ) |
| 45 | 24 44 | ralrnmptw | ⊢ ( ∀ 𝑦 ∈ 𝑢 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ∀ 𝑐 ∈ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ( 𝐹 “ 𝑐 ) ∈ 𝑢 ↔ ∀ 𝑦 ∈ 𝑢 ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ∈ 𝑢 ) ) |
| 46 | 20 45 | syl | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ( ∀ 𝑐 ∈ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ( 𝐹 “ 𝑐 ) ∈ 𝑢 ↔ ∀ 𝑦 ∈ 𝑢 ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ∈ 𝑢 ) ) |
| 47 | 42 46 | mpbird | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∀ 𝑐 ∈ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ( 𝐹 “ 𝑐 ) ∈ 𝑢 ) |
| 48 | 47 | adantr | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ∀ 𝑐 ∈ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ( 𝐹 “ 𝑐 ) ∈ 𝑢 ) |
| 49 | 48 | r19.21bi | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) ∧ 𝑐 ∈ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) → ( 𝐹 “ 𝑐 ) ∈ 𝑢 ) |
| 50 | 33 49 | syldan | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) ∧ 𝑐 ∈ 𝑠 ) → ( 𝐹 “ 𝑐 ) ∈ 𝑢 ) |
| 51 | 50 | fmpttd | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) : 𝑠 ⟶ 𝑢 ) |
| 52 | 51 | frnd | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ⊆ 𝑢 ) |
| 53 | simprlr | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → 𝑠 ∈ Fin ) | |
| 54 | eqid | ⊢ ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) = ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) | |
| 55 | 54 | rnmpt | ⊢ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) = { 𝑑 ∣ ∃ 𝑐 ∈ 𝑠 𝑑 = ( 𝐹 “ 𝑐 ) } |
| 56 | abrexfi | ⊢ ( 𝑠 ∈ Fin → { 𝑑 ∣ ∃ 𝑐 ∈ 𝑠 𝑑 = ( 𝐹 “ 𝑐 ) } ∈ Fin ) | |
| 57 | 55 56 | eqeltrid | ⊢ ( 𝑠 ∈ Fin → ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ∈ Fin ) |
| 58 | 53 57 | syl | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ∈ Fin ) |
| 59 | elfpw | ⊢ ( ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ∈ ( 𝒫 𝑢 ∩ Fin ) ↔ ( ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ⊆ 𝑢 ∧ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ∈ Fin ) ) | |
| 60 | 52 58 59 | sylanbrc | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ∈ ( 𝒫 𝑢 ∩ Fin ) ) |
| 61 | 17 | adantr | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 62 | 61 | fdmd | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → dom 𝐹 = ∪ 𝐽 ) |
| 63 | simpll2 | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 64 | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 65 | fdm | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) | |
| 66 | 63 64 65 | 3syl | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → dom 𝐹 = 𝑋 ) |
| 67 | simprr | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ∪ 𝐽 = ∪ 𝑠 ) | |
| 68 | 62 66 67 | 3eqtr3d | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → 𝑋 = ∪ 𝑠 ) |
| 69 | 68 | imaeq2d | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ( 𝐹 “ 𝑋 ) = ( 𝐹 “ ∪ 𝑠 ) ) |
| 70 | foima | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ( 𝐹 “ 𝑋 ) = 𝑌 ) | |
| 71 | 63 70 | syl | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ( 𝐹 “ 𝑋 ) = 𝑌 ) |
| 72 | 50 | ralrimiva | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ∀ 𝑐 ∈ 𝑠 ( 𝐹 “ 𝑐 ) ∈ 𝑢 ) |
| 73 | dfiun2g | ⊢ ( ∀ 𝑐 ∈ 𝑠 ( 𝐹 “ 𝑐 ) ∈ 𝑢 → ∪ 𝑐 ∈ 𝑠 ( 𝐹 “ 𝑐 ) = ∪ { 𝑑 ∣ ∃ 𝑐 ∈ 𝑠 𝑑 = ( 𝐹 “ 𝑐 ) } ) | |
| 74 | 72 73 | syl | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ∪ 𝑐 ∈ 𝑠 ( 𝐹 “ 𝑐 ) = ∪ { 𝑑 ∣ ∃ 𝑐 ∈ 𝑠 𝑑 = ( 𝐹 “ 𝑐 ) } ) |
| 75 | imauni | ⊢ ( 𝐹 “ ∪ 𝑠 ) = ∪ 𝑐 ∈ 𝑠 ( 𝐹 “ 𝑐 ) | |
| 76 | 55 | unieqi | ⊢ ∪ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) = ∪ { 𝑑 ∣ ∃ 𝑐 ∈ 𝑠 𝑑 = ( 𝐹 “ 𝑐 ) } |
| 77 | 74 75 76 | 3eqtr4g | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ( 𝐹 “ ∪ 𝑠 ) = ∪ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ) |
| 78 | 69 71 77 | 3eqtr3d | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → 𝑌 = ∪ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ) |
| 79 | unieq | ⊢ ( 𝑣 = ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) → ∪ 𝑣 = ∪ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ) | |
| 80 | 79 | rspceeqv | ⊢ ( ( ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ 𝑌 = ∪ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) |
| 81 | 60 78 80 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) |
| 82 | 81 | expr | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ) → ( ∪ 𝐽 = ∪ 𝑠 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) |
| 83 | 31 82 | sylan2b | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑠 ∈ ( 𝒫 ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∩ Fin ) ) → ( ∪ 𝐽 = ∪ 𝑠 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) |
| 84 | 83 | rexlimdva | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ( ∃ 𝑠 ∈ ( 𝒫 ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∩ Fin ) ∪ 𝐽 = ∪ 𝑠 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) |
| 85 | 30 84 | mpd | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) |
| 86 | 85 | expr | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑢 ⊆ 𝐾 ) → ( 𝑌 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) |
| 87 | 4 86 | sylan2 | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑢 ∈ 𝒫 𝐾 ) → ( 𝑌 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) |
| 88 | 87 | ralrimiva | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ∀ 𝑢 ∈ 𝒫 𝐾 ( 𝑌 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) |
| 89 | 1 | iscmp | ⊢ ( 𝐾 ∈ Comp ↔ ( 𝐾 ∈ Top ∧ ∀ 𝑢 ∈ 𝒫 𝐾 ( 𝑌 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) ) |
| 90 | 3 88 89 | sylanbrc | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Comp ) |