This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constructed uniform space is an uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tuslem.k | ⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) | |
| Assertion | tususp | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐾 ∈ UnifSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tuslem.k | ⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) | |
| 2 | id | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 3 | 1 | tususs | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSt ‘ 𝐾 ) ) |
| 4 | 1 | tusbas | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
| 5 | 4 | fveq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( UnifOn ‘ 𝑋 ) = ( UnifOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 6 | 2 3 5 | 3eltr3d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( UnifSt ‘ 𝐾 ) ∈ ( UnifOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 7 | 1 | tusunif | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSet ‘ 𝐾 ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( unifTop ‘ ( UnifSet ‘ 𝐾 ) ) ) |
| 9 | 1 | tuslem | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝑈 = ( UnifSet ‘ 𝐾 ) ∧ ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) ) |
| 10 | 9 | simp3d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) |
| 11 | 7 3 | eqtr3d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( UnifSet ‘ 𝐾 ) = ( UnifSt ‘ 𝐾 ) ) |
| 12 | 11 | fveq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ ( UnifSet ‘ 𝐾 ) ) = ( unifTop ‘ ( UnifSt ‘ 𝐾 ) ) ) |
| 13 | 8 10 12 | 3eqtr3d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopOpen ‘ 𝐾 ) = ( unifTop ‘ ( UnifSt ‘ 𝐾 ) ) ) |
| 14 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 15 | eqid | ⊢ ( UnifSt ‘ 𝐾 ) = ( UnifSt ‘ 𝐾 ) | |
| 16 | eqid | ⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) | |
| 17 | 14 15 16 | isusp | ⊢ ( 𝐾 ∈ UnifSp ↔ ( ( UnifSt ‘ 𝐾 ) ∈ ( UnifOn ‘ ( Base ‘ 𝐾 ) ) ∧ ( TopOpen ‘ 𝐾 ) = ( unifTop ‘ ( UnifSt ‘ 𝐾 ) ) ) ) |
| 18 | 6 13 17 | sylanbrc | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐾 ∈ UnifSp ) |