This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniform structure of a constructed uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tuslem.k | ⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) | |
| Assertion | tususs | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSt ‘ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tuslem.k | ⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) | |
| 2 | 1 | tusunif | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSet ‘ 𝐾 ) ) |
| 3 | ustuni | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ 𝑈 = ( 𝑋 × 𝑋 ) ) | |
| 4 | 2 | unieqd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ 𝑈 = ∪ ( UnifSet ‘ 𝐾 ) ) |
| 5 | 1 | tusbas | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
| 6 | 5 | sqxpeqd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 7 | 3 4 6 | 3eqtr3rd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) = ∪ ( UnifSet ‘ 𝐾 ) ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 9 | eqid | ⊢ ( UnifSet ‘ 𝐾 ) = ( UnifSet ‘ 𝐾 ) | |
| 10 | 8 9 | ussid | ⊢ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) = ∪ ( UnifSet ‘ 𝐾 ) → ( UnifSet ‘ 𝐾 ) = ( UnifSt ‘ 𝐾 ) ) |
| 11 | 7 10 | syl | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( UnifSet ‘ 𝐾 ) = ( UnifSt ‘ 𝐾 ) ) |
| 12 | 2 11 | eqtrd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSt ‘ 𝐾 ) ) |