This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology induced by a uniform structure generated by an extended metric D is that metric's open sets. (Contributed by Thierry Arnoux, 11-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmetutop | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( MetOpen ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetpsmet | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 2 | psmetutop | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
| 4 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 5 | 4 | mopnval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( MetOpen ‘ 𝐷 ) = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( MetOpen ‘ 𝐷 ) = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
| 7 | 3 6 | eqtr4d | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( MetOpen ‘ 𝐷 ) ) |