This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " W is a complete uniform space." (Contributed by Thierry Arnoux, 3-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscusp | ⊢ ( 𝑊 ∈ CUnifSp ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 | ⊢ ( 𝑤 = 𝑊 → ( Fil ‘ ( Base ‘ 𝑤 ) ) = ( Fil ‘ ( Base ‘ 𝑊 ) ) ) | |
| 2 | 2fveq3 | ⊢ ( 𝑤 = 𝑊 → ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) = ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝑤 = 𝑊 → ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) ↔ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( TopOpen ‘ 𝑤 ) = ( TopOpen ‘ 𝑊 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) = ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ) |
| 6 | 5 | neeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ↔ ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 7 | 3 6 | imbi12d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) ↔ ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) ) |
| 8 | 1 7 | raleqbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑤 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) ↔ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) ) |
| 9 | df-cusp | ⊢ CUnifSp = { 𝑤 ∈ UnifSp ∣ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑤 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) } | |
| 10 | 8 9 | elrab2 | ⊢ ( 𝑊 ∈ CUnifSp ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) ) |