This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any subset of A smaller than its cofinality has union less than A . (This is the contrapositive to cfslb .) (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cfslb.1 | ⊢ 𝐴 ∈ V | |
| Assertion | cfslbn | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≺ ( cf ‘ 𝐴 ) ) → ∪ 𝐵 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfslb.1 | ⊢ 𝐴 ∈ V | |
| 2 | uniss | ⊢ ( 𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ ∪ 𝐴 ) | |
| 3 | limuni | ⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) | |
| 4 | 3 | sseq2d | ⊢ ( Lim 𝐴 → ( ∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ ∪ 𝐴 ) ) |
| 5 | 2 4 | imbitrrid | ⊢ ( Lim 𝐴 → ( 𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ 𝐴 ) ) |
| 6 | 5 | imp | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ∪ 𝐵 ⊆ 𝐴 ) |
| 7 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 8 | ordsson | ⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) | |
| 9 | 7 8 | syl | ⊢ ( Lim 𝐴 → 𝐴 ⊆ On ) |
| 10 | sstr2 | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ⊆ On → 𝐵 ⊆ On ) ) | |
| 11 | 9 10 | syl5com | ⊢ ( Lim 𝐴 → ( 𝐵 ⊆ 𝐴 → 𝐵 ⊆ On ) ) |
| 12 | ssorduni | ⊢ ( 𝐵 ⊆ On → Ord ∪ 𝐵 ) | |
| 13 | 11 12 | syl6 | ⊢ ( Lim 𝐴 → ( 𝐵 ⊆ 𝐴 → Ord ∪ 𝐵 ) ) |
| 14 | 13 7 | jctird | ⊢ ( Lim 𝐴 → ( 𝐵 ⊆ 𝐴 → ( Ord ∪ 𝐵 ∧ Ord 𝐴 ) ) ) |
| 15 | ordsseleq | ⊢ ( ( Ord ∪ 𝐵 ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ ( ∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴 ) ) ) | |
| 16 | 14 15 | syl6 | ⊢ ( Lim 𝐴 → ( 𝐵 ⊆ 𝐴 → ( ∪ 𝐵 ⊆ 𝐴 ↔ ( ∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴 ) ) ) ) |
| 17 | 16 | imp | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ ( ∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴 ) ) ) |
| 18 | 6 17 | mpbid | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴 ) ) |
| 19 | 18 | ord | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ¬ ∪ 𝐵 ∈ 𝐴 → ∪ 𝐵 = 𝐴 ) ) |
| 20 | 1 | cfslb | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∪ 𝐵 = 𝐴 ) → ( cf ‘ 𝐴 ) ≼ 𝐵 ) |
| 21 | domnsym | ⊢ ( ( cf ‘ 𝐴 ) ≼ 𝐵 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∪ 𝐵 = 𝐴 ) → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) |
| 23 | 22 | 3expia | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∪ 𝐵 = 𝐴 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) ) |
| 24 | 19 23 | syld | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ¬ ∪ 𝐵 ∈ 𝐴 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) ) |
| 25 | 24 | con4d | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ∪ 𝐵 ∈ 𝐴 ) ) |
| 26 | 25 | 3impia | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≺ ( cf ‘ 𝐴 ) ) → ∪ 𝐵 ∈ 𝐴 ) |