This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relative complements of the finite parts of an infinite set is a filter. When A = NN the set of the relative complements is called Frechet's filter and is used to define the concept of limit of a sequence. (Contributed by FL, 14-Jul-2008) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfinfil | |- ( ( X e. V /\ A C_ X /\ -. A e. Fin ) -> { x e. ~P X | ( A \ x ) e. Fin } e. ( Fil ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 | |- ( x = y -> ( A \ x ) = ( A \ y ) ) |
|
| 2 | 1 | eleq1d | |- ( x = y -> ( ( A \ x ) e. Fin <-> ( A \ y ) e. Fin ) ) |
| 3 | 2 | elrab | |- ( y e. { x e. ~P X | ( A \ x ) e. Fin } <-> ( y e. ~P X /\ ( A \ y ) e. Fin ) ) |
| 4 | velpw | |- ( y e. ~P X <-> y C_ X ) |
|
| 5 | 4 | anbi1i | |- ( ( y e. ~P X /\ ( A \ y ) e. Fin ) <-> ( y C_ X /\ ( A \ y ) e. Fin ) ) |
| 6 | 3 5 | bitri | |- ( y e. { x e. ~P X | ( A \ x ) e. Fin } <-> ( y C_ X /\ ( A \ y ) e. Fin ) ) |
| 7 | 6 | a1i | |- ( ( X e. V /\ A C_ X /\ -. A e. Fin ) -> ( y e. { x e. ~P X | ( A \ x ) e. Fin } <-> ( y C_ X /\ ( A \ y ) e. Fin ) ) ) |
| 8 | simp1 | |- ( ( X e. V /\ A C_ X /\ -. A e. Fin ) -> X e. V ) |
|
| 9 | ssdif0 | |- ( A C_ X <-> ( A \ X ) = (/) ) |
|
| 10 | 0fi | |- (/) e. Fin |
|
| 11 | eleq1 | |- ( ( A \ X ) = (/) -> ( ( A \ X ) e. Fin <-> (/) e. Fin ) ) |
|
| 12 | 10 11 | mpbiri | |- ( ( A \ X ) = (/) -> ( A \ X ) e. Fin ) |
| 13 | 9 12 | sylbi | |- ( A C_ X -> ( A \ X ) e. Fin ) |
| 14 | difeq2 | |- ( y = X -> ( A \ y ) = ( A \ X ) ) |
|
| 15 | 14 | eleq1d | |- ( y = X -> ( ( A \ y ) e. Fin <-> ( A \ X ) e. Fin ) ) |
| 16 | 15 | sbcieg | |- ( X e. V -> ( [. X / y ]. ( A \ y ) e. Fin <-> ( A \ X ) e. Fin ) ) |
| 17 | 16 | biimpar | |- ( ( X e. V /\ ( A \ X ) e. Fin ) -> [. X / y ]. ( A \ y ) e. Fin ) |
| 18 | 13 17 | sylan2 | |- ( ( X e. V /\ A C_ X ) -> [. X / y ]. ( A \ y ) e. Fin ) |
| 19 | 18 | 3adant3 | |- ( ( X e. V /\ A C_ X /\ -. A e. Fin ) -> [. X / y ]. ( A \ y ) e. Fin ) |
| 20 | 0ex | |- (/) e. _V |
|
| 21 | difeq2 | |- ( y = (/) -> ( A \ y ) = ( A \ (/) ) ) |
|
| 22 | 21 | eleq1d | |- ( y = (/) -> ( ( A \ y ) e. Fin <-> ( A \ (/) ) e. Fin ) ) |
| 23 | 20 22 | sbcie | |- ( [. (/) / y ]. ( A \ y ) e. Fin <-> ( A \ (/) ) e. Fin ) |
| 24 | dif0 | |- ( A \ (/) ) = A |
|
| 25 | 24 | eleq1i | |- ( ( A \ (/) ) e. Fin <-> A e. Fin ) |
| 26 | 23 25 | sylbb | |- ( [. (/) / y ]. ( A \ y ) e. Fin -> A e. Fin ) |
| 27 | 26 | con3i | |- ( -. A e. Fin -> -. [. (/) / y ]. ( A \ y ) e. Fin ) |
| 28 | 27 | 3ad2ant3 | |- ( ( X e. V /\ A C_ X /\ -. A e. Fin ) -> -. [. (/) / y ]. ( A \ y ) e. Fin ) |
| 29 | sscon | |- ( w C_ z -> ( A \ z ) C_ ( A \ w ) ) |
|
| 30 | ssfi | |- ( ( ( A \ w ) e. Fin /\ ( A \ z ) C_ ( A \ w ) ) -> ( A \ z ) e. Fin ) |
|
| 31 | 30 | expcom | |- ( ( A \ z ) C_ ( A \ w ) -> ( ( A \ w ) e. Fin -> ( A \ z ) e. Fin ) ) |
| 32 | 29 31 | syl | |- ( w C_ z -> ( ( A \ w ) e. Fin -> ( A \ z ) e. Fin ) ) |
| 33 | vex | |- w e. _V |
|
| 34 | difeq2 | |- ( y = w -> ( A \ y ) = ( A \ w ) ) |
|
| 35 | 34 | eleq1d | |- ( y = w -> ( ( A \ y ) e. Fin <-> ( A \ w ) e. Fin ) ) |
| 36 | 33 35 | sbcie | |- ( [. w / y ]. ( A \ y ) e. Fin <-> ( A \ w ) e. Fin ) |
| 37 | vex | |- z e. _V |
|
| 38 | difeq2 | |- ( y = z -> ( A \ y ) = ( A \ z ) ) |
|
| 39 | 38 | eleq1d | |- ( y = z -> ( ( A \ y ) e. Fin <-> ( A \ z ) e. Fin ) ) |
| 40 | 37 39 | sbcie | |- ( [. z / y ]. ( A \ y ) e. Fin <-> ( A \ z ) e. Fin ) |
| 41 | 32 36 40 | 3imtr4g | |- ( w C_ z -> ( [. w / y ]. ( A \ y ) e. Fin -> [. z / y ]. ( A \ y ) e. Fin ) ) |
| 42 | 41 | 3ad2ant3 | |- ( ( ( X e. V /\ A C_ X /\ -. A e. Fin ) /\ z C_ X /\ w C_ z ) -> ( [. w / y ]. ( A \ y ) e. Fin -> [. z / y ]. ( A \ y ) e. Fin ) ) |
| 43 | difindi | |- ( A \ ( z i^i w ) ) = ( ( A \ z ) u. ( A \ w ) ) |
|
| 44 | unfi | |- ( ( ( A \ z ) e. Fin /\ ( A \ w ) e. Fin ) -> ( ( A \ z ) u. ( A \ w ) ) e. Fin ) |
|
| 45 | 43 44 | eqeltrid | |- ( ( ( A \ z ) e. Fin /\ ( A \ w ) e. Fin ) -> ( A \ ( z i^i w ) ) e. Fin ) |
| 46 | 45 | a1i | |- ( ( ( X e. V /\ A C_ X /\ -. A e. Fin ) /\ z C_ X /\ w C_ X ) -> ( ( ( A \ z ) e. Fin /\ ( A \ w ) e. Fin ) -> ( A \ ( z i^i w ) ) e. Fin ) ) |
| 47 | 40 36 | anbi12i | |- ( ( [. z / y ]. ( A \ y ) e. Fin /\ [. w / y ]. ( A \ y ) e. Fin ) <-> ( ( A \ z ) e. Fin /\ ( A \ w ) e. Fin ) ) |
| 48 | 37 | inex1 | |- ( z i^i w ) e. _V |
| 49 | difeq2 | |- ( y = ( z i^i w ) -> ( A \ y ) = ( A \ ( z i^i w ) ) ) |
|
| 50 | 49 | eleq1d | |- ( y = ( z i^i w ) -> ( ( A \ y ) e. Fin <-> ( A \ ( z i^i w ) ) e. Fin ) ) |
| 51 | 48 50 | sbcie | |- ( [. ( z i^i w ) / y ]. ( A \ y ) e. Fin <-> ( A \ ( z i^i w ) ) e. Fin ) |
| 52 | 46 47 51 | 3imtr4g | |- ( ( ( X e. V /\ A C_ X /\ -. A e. Fin ) /\ z C_ X /\ w C_ X ) -> ( ( [. z / y ]. ( A \ y ) e. Fin /\ [. w / y ]. ( A \ y ) e. Fin ) -> [. ( z i^i w ) / y ]. ( A \ y ) e. Fin ) ) |
| 53 | 7 8 19 28 42 52 | isfild | |- ( ( X e. V /\ A C_ X /\ -. A e. Fin ) -> { x e. ~P X | ( A \ x ) e. Fin } e. ( Fil ` X ) ) |