This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 30-Jan-2008) (Revised by Mario Carneiro, 30-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | caussi | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ⊆ ( Cau ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | ⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 | |
| 2 | xpss2 | ⊢ ( ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 → ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ⊆ ( ℂ × 𝑋 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ⊆ ( ℂ × 𝑋 ) |
| 4 | sstr | ⊢ ( ( 𝑓 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ∧ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ⊆ ( ℂ × 𝑋 ) ) → 𝑓 ⊆ ( ℂ × 𝑋 ) ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝑓 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) → 𝑓 ⊆ ( ℂ × 𝑋 ) ) |
| 6 | 5 | anim2i | ⊢ ( ( Fun 𝑓 ∧ 𝑓 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) → ( Fun 𝑓 ∧ 𝑓 ⊆ ( ℂ × 𝑋 ) ) ) |
| 7 | 6 | a1i | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( Fun 𝑓 ∧ 𝑓 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) → ( Fun 𝑓 ∧ 𝑓 ⊆ ( ℂ × 𝑋 ) ) ) ) |
| 8 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 9 | inex1g | ⊢ ( 𝑋 ∈ dom ∞Met → ( 𝑋 ∩ 𝑌 ) ∈ V ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∩ 𝑌 ) ∈ V ) |
| 11 | cnex | ⊢ ℂ ∈ V | |
| 12 | elpmg | ⊢ ( ( ( 𝑋 ∩ 𝑌 ) ∈ V ∧ ℂ ∈ V ) → ( 𝑓 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) ) ) | |
| 13 | 10 11 12 | sylancl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) ) ) |
| 14 | elpmg | ⊢ ( ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) → ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( ℂ × 𝑋 ) ) ) ) | |
| 15 | 8 11 14 | sylancl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( ℂ × 𝑋 ) ) ) ) |
| 16 | 7 13 15 | 3imtr4d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) → 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ) |
| 17 | uzid | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ( ℤ≥ ‘ 𝑦 ) ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) → 𝑦 ∈ ( ℤ≥ ‘ 𝑦 ) ) |
| 19 | simp2 | ⊢ ( ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ) | |
| 20 | 19 | ralimi | ⊢ ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) → ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ) |
| 21 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑦 ) ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ↔ ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑋 ∩ 𝑌 ) ) ) |
| 23 | 22 | rspcva | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑦 ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑋 ∩ 𝑌 ) ) |
| 24 | 18 20 23 | syl2an | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑋 ∩ 𝑌 ) ) |
| 25 | simpr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑋 ∩ 𝑌 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑋 ∩ 𝑌 ) ) | |
| 26 | 25 | elin2d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑋 ∩ 𝑌 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝑌 ) |
| 27 | inss2 | ⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 | |
| 28 | 27 | a1i | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝑌 ) → ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 ) |
| 29 | 28 | sselda | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝑌 ) ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ) → ( 𝑓 ‘ 𝑧 ) ∈ 𝑌 ) |
| 30 | simplr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝑌 ) ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝑌 ) | |
| 31 | 29 30 | ovresd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝑌 ) ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ) → ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) ) |
| 32 | 31 | breq1d | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝑌 ) ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ) → ( ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ↔ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) |
| 33 | 32 | biimpd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝑌 ) ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ) → ( ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 → ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) |
| 34 | 33 | imdistanda | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝑌 ) → ( ( ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) → ( ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) |
| 35 | 1 | a1i | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝑌 ) → ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 ) |
| 36 | 35 | sseld | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝑌 ) → ( ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) → ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ) ) |
| 37 | 36 | anim1d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝑌 ) → ( ( ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) |
| 38 | 34 37 | syld | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝑌 ) → ( ( ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) |
| 39 | 26 38 | syldan | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑋 ∩ 𝑌 ) ) → ( ( ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) |
| 40 | 39 | anim2d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑋 ∩ 𝑌 ) ) → ( ( 𝑧 ∈ dom 𝑓 ∧ ( ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) → ( 𝑧 ∈ dom 𝑓 ∧ ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) ) |
| 41 | 3anass | ⊢ ( ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ↔ ( 𝑧 ∈ dom 𝑓 ∧ ( ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) | |
| 42 | 3anass | ⊢ ( ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ↔ ( 𝑧 ∈ dom 𝑓 ∧ ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) | |
| 43 | 40 41 42 | 3imtr4g | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑋 ∩ 𝑌 ) ) → ( ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) → ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) |
| 44 | 43 | ralimdv | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑋 ∩ 𝑌 ) ) → ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) → ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) |
| 45 | 44 | impancom | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) → ( ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑋 ∩ 𝑌 ) → ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) |
| 46 | 24 45 | mpd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) → ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) |
| 47 | 46 | ex | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ℤ ) → ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) → ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) |
| 48 | 47 | reximdva | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ∃ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) |
| 49 | 48 | ralimdv | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) |
| 50 | 16 49 | anim12d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝑓 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) → ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) ) |
| 51 | xmetres | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) ) | |
| 52 | iscau2 | ⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) → ( 𝑓 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ↔ ( 𝑓 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) ) | |
| 53 | 51 52 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ↔ ( 𝑓 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑋 ∩ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑧 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) ) |
| 54 | iscau2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( 𝑧 ∈ dom 𝑓 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ( 𝑓 ‘ 𝑧 ) 𝐷 ( 𝑓 ‘ 𝑦 ) ) < 𝑥 ) ) ) ) | |
| 55 | 50 53 54 | 3imtr4d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) → 𝑓 ∈ ( Cau ‘ 𝐷 ) ) ) |
| 56 | 55 | ssrdv | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ⊆ ( Cau ‘ 𝐷 ) ) |