This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscfil2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscfil | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) | |
| 2 | xmetf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 3 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 4 | 3 | ffund | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → Fun 𝐷 ) |
| 5 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ 𝑋 ) | |
| 6 | 5 | ad4ant24 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ 𝑋 ) |
| 7 | xpss12 | ⊢ ( ( 𝑦 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑋 ) → ( 𝑦 × 𝑦 ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 8 | 6 6 7 | syl2anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑦 × 𝑦 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 9 | 3 | fdmd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 10 | 8 9 | sseqtrrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) |
| 11 | funimassov | ⊢ ( ( Fun 𝐷 ∧ ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) → ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ) ) | |
| 12 | 4 10 11 | syl2anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ) ) |
| 13 | 0xr | ⊢ 0 ∈ ℝ* | |
| 14 | 13 | a1i | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 0 ∈ ℝ* ) |
| 15 | simpllr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 𝑥 ∈ ℝ+ ) | |
| 16 | 15 | rpxrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 𝑥 ∈ ℝ* ) |
| 17 | simp-4l | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 18 | 6 | sselda | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ 𝑋 ) |
| 19 | 18 | adantrr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 𝑧 ∈ 𝑋 ) |
| 20 | 6 | sselda | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ 𝑤 ∈ 𝑦 ) → 𝑤 ∈ 𝑋 ) |
| 21 | 20 | adantrl | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 𝑤 ∈ 𝑋 ) |
| 22 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ) | |
| 23 | 17 19 21 22 | syl3anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ) |
| 24 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → 0 ≤ ( 𝑧 𝐷 𝑤 ) ) | |
| 25 | 17 19 21 24 | syl3anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 0 ≤ ( 𝑧 𝐷 𝑤 ) ) |
| 26 | elico1 | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ↔ ( ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑤 ) ∧ ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) ) | |
| 27 | df-3an | ⊢ ( ( ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑤 ) ∧ ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ↔ ( ( ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑤 ) ) ∧ ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) | |
| 28 | 26 27 | bitrdi | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ↔ ( ( ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑤 ) ) ∧ ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) ) |
| 29 | 28 | baibd | ⊢ ( ( ( 0 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ∧ ( ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑤 ) ) ) → ( ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ↔ ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 30 | 14 16 23 25 29 | syl22anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → ( ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ↔ ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 31 | 30 | 2ralbidva | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 32 | 12 31 | bitrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 33 | 32 | rexbidva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ∃ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 34 | 33 | ralbidva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 35 | 34 | pm5.32da | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) ) |
| 36 | 1 35 | bitrd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) ) |