This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018) (Proof shortened by AV, 24-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatsymb | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = if ( 𝐼 < ( ♯ ‘ 𝐴 ) , ( 𝐴 ‘ 𝐼 ) , ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprll | ⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ) | |
| 2 | simpr | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) → 𝐼 < ( ♯ ‘ 𝐴 ) ) | |
| 3 | 2 | anim2i | ⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) |
| 4 | simpr | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → 𝐼 ∈ ℤ ) | |
| 5 | 0zd | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → 0 ∈ ℤ ) | |
| 6 | lencl | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 7 | 6 | nn0zd | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 9 | elfzo | ⊢ ( ( 𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ℤ ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↔ ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) ) | |
| 10 | 4 5 8 9 | syl3anc | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↔ ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) ) |
| 11 | 10 | ad2antrl | ⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↔ ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) ) |
| 12 | 3 11 | mpbird | ⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
| 13 | df-3an | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) ↔ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) ) | |
| 14 | 1 12 13 | sylanbrc | ⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) ) |
| 15 | ccatval1 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ( 𝐴 ‘ 𝐼 ) ) | |
| 16 | 15 | eqcomd | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 17 | 14 16 | syl | ⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 18 | 17 | ex | ⊢ ( 0 ≤ 𝐼 → ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 19 | zre | ⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ ) | |
| 20 | 0red | ⊢ ( 𝐼 ∈ ℤ → 0 ∈ ℝ ) | |
| 21 | 19 20 | ltnled | ⊢ ( 𝐼 ∈ ℤ → ( 𝐼 < 0 ↔ ¬ 0 ≤ 𝐼 ) ) |
| 22 | 21 | adantl | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 < 0 ↔ ¬ 0 ≤ 𝐼 ) ) |
| 23 | simpl | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → 𝐴 ∈ Word 𝑉 ) | |
| 24 | 23 | anim1i | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
| 26 | animorrl | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐼 < 0 ∨ ( ♯ ‘ 𝐴 ) ≤ 𝐼 ) ) | |
| 27 | wrdsymb0 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 < 0 ∨ ( ♯ ‘ 𝐴 ) ≤ 𝐼 ) → ( 𝐴 ‘ 𝐼 ) = ∅ ) ) | |
| 28 | 25 26 27 | sylc | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐴 ‘ 𝐼 ) = ∅ ) |
| 29 | ccatcl | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) | |
| 30 | 29 | anim1i | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
| 31 | 30 | adantr | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
| 32 | animorrl | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐼 < 0 ∨ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ≤ 𝐼 ) ) | |
| 33 | wrdsymb0 | ⊢ ( ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 < 0 ∨ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ≤ 𝐼 ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ∅ ) ) | |
| 34 | 31 32 33 | sylc | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ∅ ) |
| 35 | 28 34 | eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 36 | 35 | ex | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 < 0 → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 37 | 22 36 | sylbird | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ¬ 0 ≤ 𝐼 → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 38 | 37 | com12 | ⊢ ( ¬ 0 ≤ 𝐼 → ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 39 | 38 | adantrd | ⊢ ( ¬ 0 ≤ 𝐼 → ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 40 | 18 39 | pm2.61i | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 41 | simprll | ⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ) | |
| 42 | id | ⊢ ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) | |
| 43 | 6 | nn0red | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 44 | lenlt | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ 𝐼 ∈ ℝ ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) | |
| 45 | 43 19 44 | syl2an | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) |
| 46 | 45 | adantlr | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) |
| 47 | 46 | biimpar | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ≤ 𝐼 ) |
| 48 | 42 47 | anim12ci | ⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ∧ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 49 | lencl | ⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 50 | 49 | nn0zd | ⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 51 | zaddcl | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) | |
| 52 | 7 50 51 | syl2an | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
| 54 | elfzo | ⊢ ( ( 𝐼 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ∧ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) | |
| 55 | 4 8 53 54 | syl3anc | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ∧ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 56 | 55 | ad2antrl | ⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ∧ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 57 | 48 56 | mpbird | ⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 58 | df-3an | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ↔ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) | |
| 59 | 41 57 58 | sylanbrc | ⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 60 | ccatval2 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) | |
| 61 | 60 | eqcomd | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 62 | 59 61 | syl | ⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 63 | 62 | ex | ⊢ ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 64 | 49 | nn0red | ⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 65 | readdcl | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℝ ) | |
| 66 | 43 64 65 | syl2an | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℝ ) |
| 67 | lenlt | ⊢ ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℝ ∧ 𝐼 ∈ ℝ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) | |
| 68 | 66 19 67 | syl2an | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 69 | simplr | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → 𝐵 ∈ Word 𝑉 ) | |
| 70 | simpr | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → 𝐼 ∈ ℤ ) | |
| 71 | 7 | adantr | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 72 | 70 71 | zsubcld | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) |
| 73 | 72 | adantlr | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) |
| 74 | 69 73 | jca | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐵 ∈ Word 𝑉 ∧ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) ) |
| 75 | 74 | adantr | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( 𝐵 ∈ Word 𝑉 ∧ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) ) |
| 76 | 43 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 77 | 64 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 78 | 19 | adantl | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → 𝐼 ∈ ℝ ) |
| 79 | 76 77 78 | leaddsub2d | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ↔ ( ♯ ‘ 𝐵 ) ≤ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) |
| 80 | 79 | biimpa | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ♯ ‘ 𝐵 ) ≤ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) |
| 81 | 80 | olcd | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ( 𝐼 − ( ♯ ‘ 𝐴 ) ) < 0 ∨ ( ♯ ‘ 𝐵 ) ≤ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) |
| 82 | wrdsymb0 | ⊢ ( ( 𝐵 ∈ Word 𝑉 ∧ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) → ( ( ( 𝐼 − ( ♯ ‘ 𝐴 ) ) < 0 ∨ ( ♯ ‘ 𝐵 ) ≤ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ∅ ) ) | |
| 83 | 75 81 82 | sylc | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ∅ ) |
| 84 | 30 | adantr | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
| 85 | ccatlen | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) | |
| 86 | 85 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 87 | simpr | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) | |
| 88 | 86 87 | eqbrtrd | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ≤ 𝐼 ) |
| 89 | 88 | olcd | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( 𝐼 < 0 ∨ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ≤ 𝐼 ) ) |
| 90 | 84 89 33 | sylc | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ∅ ) |
| 91 | 83 90 | eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 92 | 91 | ex | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 93 | 68 92 | sylbird | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 94 | 93 | com12 | ⊢ ( ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 95 | 94 | adantrd | ⊢ ( ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
| 96 | 63 95 | pm2.61i | ⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 97 | 40 96 | ifeqda | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → if ( 𝐼 < ( ♯ ‘ 𝐴 ) , ( 𝐴 ‘ 𝐼 ) , ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
| 98 | 97 | eqcomd | ⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = if ( 𝐼 < ( ♯ ‘ 𝐴 ) , ( 𝐴 ‘ 𝐼 ) , ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) ) |
| 99 | 98 | 3impa | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = if ( 𝐼 < ( ♯ ‘ 𝐴 ) , ( 𝐴 ‘ 𝐼 ) , ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) ) |