This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018) (Proof shortened by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdsymb0 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) → ( 𝑊 ‘ 𝐼 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrddm | ⊢ ( 𝑊 ∈ Word 𝑉 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 2 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 3 | 2 | nn0zd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 4 | simpr | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) → 𝐼 ∈ ℤ ) | |
| 5 | 0zd | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) → 0 ∈ ℤ ) | |
| 6 | simpl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) | |
| 7 | nelfzo | ⊢ ( ( 𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) → ( 𝐼 ∉ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) ) ) | |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∉ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) ) ) |
| 9 | 8 | biimpar | ⊢ ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) ) → 𝐼 ∉ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 10 | df-nel | ⊢ ( 𝐼 ∉ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ¬ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 11 | 9 10 | sylib | ⊢ ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) ) → ¬ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 12 | eleq2 | ⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ∈ dom 𝑊 ↔ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 13 | 12 | notbid | ⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ¬ 𝐼 ∈ dom 𝑊 ↔ ¬ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 14 | 11 13 | imbitrrid | ⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) ) → ¬ 𝐼 ∈ dom 𝑊 ) ) |
| 15 | 14 | exp4c | ⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 𝐼 ∈ ℤ → ( ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) → ¬ 𝐼 ∈ dom 𝑊 ) ) ) ) |
| 16 | 1 3 15 | sylc | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐼 ∈ ℤ → ( ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) → ¬ 𝐼 ∈ dom 𝑊 ) ) ) |
| 17 | 16 | imp | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) → ¬ 𝐼 ∈ dom 𝑊 ) ) |
| 18 | ndmfv | ⊢ ( ¬ 𝐼 ∈ dom 𝑊 → ( 𝑊 ‘ 𝐼 ) = ∅ ) | |
| 19 | 17 18 | syl6 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) → ( 𝑊 ‘ 𝐼 ) = ∅ ) ) |