This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first symbol of a concatenation of two words is the first symbol of the first word if the first word is not empty. (Contributed by Alexander van der Vekens, 22-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatfv0 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝐴 ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 2 | elnnnn0b | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 0 < ( ♯ ‘ 𝐴 ) ) ) | |
| 3 | 2 | biimpri | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 0 < ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
| 4 | 1 3 | sylan | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
| 5 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↔ ( ♯ ‘ 𝐴 ) ∈ ℕ ) | |
| 6 | 4 5 | sylibr | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝐴 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
| 7 | 6 | 3adant2 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝐴 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
| 8 | ccatval1 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) | |
| 9 | 7 8 | syld3an3 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝐴 ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |