This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018) (Proof shortened by AV, 24-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatsymb | |- ( ( A e. Word V /\ B e. Word V /\ I e. ZZ ) -> ( ( A ++ B ) ` I ) = if ( I < ( # ` A ) , ( A ` I ) , ( B ` ( I - ( # ` A ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprll | |- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( A e. Word V /\ B e. Word V ) ) |
|
| 2 | simpr | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) -> I < ( # ` A ) ) |
|
| 3 | 2 | anim2i | |- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( 0 <_ I /\ I < ( # ` A ) ) ) |
| 4 | simpr | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> I e. ZZ ) |
|
| 5 | 0zd | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> 0 e. ZZ ) |
|
| 6 | lencl | |- ( A e. Word V -> ( # ` A ) e. NN0 ) |
|
| 7 | 6 | nn0zd | |- ( A e. Word V -> ( # ` A ) e. ZZ ) |
| 8 | 7 | ad2antrr | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( # ` A ) e. ZZ ) |
| 9 | elfzo | |- ( ( I e. ZZ /\ 0 e. ZZ /\ ( # ` A ) e. ZZ ) -> ( I e. ( 0 ..^ ( # ` A ) ) <-> ( 0 <_ I /\ I < ( # ` A ) ) ) ) |
|
| 10 | 4 5 8 9 | syl3anc | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I e. ( 0 ..^ ( # ` A ) ) <-> ( 0 <_ I /\ I < ( # ` A ) ) ) ) |
| 11 | 10 | ad2antrl | |- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( I e. ( 0 ..^ ( # ` A ) ) <-> ( 0 <_ I /\ I < ( # ` A ) ) ) ) |
| 12 | 3 11 | mpbird | |- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> I e. ( 0 ..^ ( # ` A ) ) ) |
| 13 | df-3an | |- ( ( A e. Word V /\ B e. Word V /\ I e. ( 0 ..^ ( # ` A ) ) ) <-> ( ( A e. Word V /\ B e. Word V ) /\ I e. ( 0 ..^ ( # ` A ) ) ) ) |
|
| 14 | 1 12 13 | sylanbrc | |- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( A e. Word V /\ B e. Word V /\ I e. ( 0 ..^ ( # ` A ) ) ) ) |
| 15 | ccatval1 | |- ( ( A e. Word V /\ B e. Word V /\ I e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` I ) = ( A ` I ) ) |
|
| 16 | 15 | eqcomd | |- ( ( A e. Word V /\ B e. Word V /\ I e. ( 0 ..^ ( # ` A ) ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) |
| 17 | 14 16 | syl | |- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) |
| 18 | 17 | ex | |- ( 0 <_ I -> ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
| 19 | zre | |- ( I e. ZZ -> I e. RR ) |
|
| 20 | 0red | |- ( I e. ZZ -> 0 e. RR ) |
|
| 21 | 19 20 | ltnled | |- ( I e. ZZ -> ( I < 0 <-> -. 0 <_ I ) ) |
| 22 | 21 | adantl | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I < 0 <-> -. 0 <_ I ) ) |
| 23 | simpl | |- ( ( A e. Word V /\ B e. Word V ) -> A e. Word V ) |
|
| 24 | 23 | anim1i | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( A e. Word V /\ I e. ZZ ) ) |
| 25 | 24 | adantr | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( A e. Word V /\ I e. ZZ ) ) |
| 26 | animorrl | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( I < 0 \/ ( # ` A ) <_ I ) ) |
|
| 27 | wrdsymb0 | |- ( ( A e. Word V /\ I e. ZZ ) -> ( ( I < 0 \/ ( # ` A ) <_ I ) -> ( A ` I ) = (/) ) ) |
|
| 28 | 25 26 27 | sylc | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( A ` I ) = (/) ) |
| 29 | ccatcl | |- ( ( A e. Word V /\ B e. Word V ) -> ( A ++ B ) e. Word V ) |
|
| 30 | 29 | anim1i | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( A ++ B ) e. Word V /\ I e. ZZ ) ) |
| 31 | 30 | adantr | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( ( A ++ B ) e. Word V /\ I e. ZZ ) ) |
| 32 | animorrl | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( I < 0 \/ ( # ` ( A ++ B ) ) <_ I ) ) |
|
| 33 | wrdsymb0 | |- ( ( ( A ++ B ) e. Word V /\ I e. ZZ ) -> ( ( I < 0 \/ ( # ` ( A ++ B ) ) <_ I ) -> ( ( A ++ B ) ` I ) = (/) ) ) |
|
| 34 | 31 32 33 | sylc | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( ( A ++ B ) ` I ) = (/) ) |
| 35 | 28 34 | eqtr4d | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) |
| 36 | 35 | ex | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I < 0 -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
| 37 | 22 36 | sylbird | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( -. 0 <_ I -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
| 38 | 37 | com12 | |- ( -. 0 <_ I -> ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
| 39 | 38 | adantrd | |- ( -. 0 <_ I -> ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
| 40 | 18 39 | pm2.61i | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) |
| 41 | simprll | |- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( A e. Word V /\ B e. Word V ) ) |
|
| 42 | id | |- ( I < ( ( # ` A ) + ( # ` B ) ) -> I < ( ( # ` A ) + ( # ` B ) ) ) |
|
| 43 | 6 | nn0red | |- ( A e. Word V -> ( # ` A ) e. RR ) |
| 44 | lenlt | |- ( ( ( # ` A ) e. RR /\ I e. RR ) -> ( ( # ` A ) <_ I <-> -. I < ( # ` A ) ) ) |
|
| 45 | 43 19 44 | syl2an | |- ( ( A e. Word V /\ I e. ZZ ) -> ( ( # ` A ) <_ I <-> -. I < ( # ` A ) ) ) |
| 46 | 45 | adantlr | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( # ` A ) <_ I <-> -. I < ( # ` A ) ) ) |
| 47 | 46 | biimpar | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) -> ( # ` A ) <_ I ) |
| 48 | 42 47 | anim12ci | |- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( ( # ` A ) <_ I /\ I < ( ( # ` A ) + ( # ` B ) ) ) ) |
| 49 | lencl | |- ( B e. Word V -> ( # ` B ) e. NN0 ) |
|
| 50 | 49 | nn0zd | |- ( B e. Word V -> ( # ` B ) e. ZZ ) |
| 51 | zaddcl | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
|
| 52 | 7 50 51 | syl2an | |- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
| 53 | 52 | adantr | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
| 54 | elfzo | |- ( ( I e. ZZ /\ ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) -> ( I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) <-> ( ( # ` A ) <_ I /\ I < ( ( # ` A ) + ( # ` B ) ) ) ) ) |
|
| 55 | 4 8 53 54 | syl3anc | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) <-> ( ( # ` A ) <_ I /\ I < ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 56 | 55 | ad2antrl | |- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) <-> ( ( # ` A ) <_ I /\ I < ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 57 | 48 56 | mpbird | |- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 58 | df-3an | |- ( ( A e. Word V /\ B e. Word V /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) <-> ( ( A e. Word V /\ B e. Word V ) /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) ) |
|
| 59 | 41 57 58 | sylanbrc | |- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( A e. Word V /\ B e. Word V /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 60 | ccatval2 | |- ( ( A e. Word V /\ B e. Word V /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) ` I ) = ( B ` ( I - ( # ` A ) ) ) ) |
|
| 61 | 60 | eqcomd | |- ( ( A e. Word V /\ B e. Word V /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) |
| 62 | 59 61 | syl | |- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) |
| 63 | 62 | ex | |- ( I < ( ( # ` A ) + ( # ` B ) ) -> ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
| 64 | 49 | nn0red | |- ( B e. Word V -> ( # ` B ) e. RR ) |
| 65 | readdcl | |- ( ( ( # ` A ) e. RR /\ ( # ` B ) e. RR ) -> ( ( # ` A ) + ( # ` B ) ) e. RR ) |
|
| 66 | 43 64 65 | syl2an | |- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` A ) + ( # ` B ) ) e. RR ) |
| 67 | lenlt | |- ( ( ( ( # ` A ) + ( # ` B ) ) e. RR /\ I e. RR ) -> ( ( ( # ` A ) + ( # ` B ) ) <_ I <-> -. I < ( ( # ` A ) + ( # ` B ) ) ) ) |
|
| 68 | 66 19 67 | syl2an | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( ( # ` A ) + ( # ` B ) ) <_ I <-> -. I < ( ( # ` A ) + ( # ` B ) ) ) ) |
| 69 | simplr | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> B e. Word V ) |
|
| 70 | simpr | |- ( ( A e. Word V /\ I e. ZZ ) -> I e. ZZ ) |
|
| 71 | 7 | adantr | |- ( ( A e. Word V /\ I e. ZZ ) -> ( # ` A ) e. ZZ ) |
| 72 | 70 71 | zsubcld | |- ( ( A e. Word V /\ I e. ZZ ) -> ( I - ( # ` A ) ) e. ZZ ) |
| 73 | 72 | adantlr | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I - ( # ` A ) ) e. ZZ ) |
| 74 | 69 73 | jca | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( B e. Word V /\ ( I - ( # ` A ) ) e. ZZ ) ) |
| 75 | 74 | adantr | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( B e. Word V /\ ( I - ( # ` A ) ) e. ZZ ) ) |
| 76 | 43 | ad2antrr | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( # ` A ) e. RR ) |
| 77 | 64 | ad2antlr | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( # ` B ) e. RR ) |
| 78 | 19 | adantl | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> I e. RR ) |
| 79 | 76 77 78 | leaddsub2d | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( ( # ` A ) + ( # ` B ) ) <_ I <-> ( # ` B ) <_ ( I - ( # ` A ) ) ) ) |
| 80 | 79 | biimpa | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( # ` B ) <_ ( I - ( # ` A ) ) ) |
| 81 | 80 | olcd | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( ( I - ( # ` A ) ) < 0 \/ ( # ` B ) <_ ( I - ( # ` A ) ) ) ) |
| 82 | wrdsymb0 | |- ( ( B e. Word V /\ ( I - ( # ` A ) ) e. ZZ ) -> ( ( ( I - ( # ` A ) ) < 0 \/ ( # ` B ) <_ ( I - ( # ` A ) ) ) -> ( B ` ( I - ( # ` A ) ) ) = (/) ) ) |
|
| 83 | 75 81 82 | sylc | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( B ` ( I - ( # ` A ) ) ) = (/) ) |
| 84 | 30 | adantr | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( ( A ++ B ) e. Word V /\ I e. ZZ ) ) |
| 85 | ccatlen | |- ( ( A e. Word V /\ B e. Word V ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
|
| 86 | 85 | ad2antrr | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
| 87 | simpr | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( ( # ` A ) + ( # ` B ) ) <_ I ) |
|
| 88 | 86 87 | eqbrtrd | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( # ` ( A ++ B ) ) <_ I ) |
| 89 | 88 | olcd | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( I < 0 \/ ( # ` ( A ++ B ) ) <_ I ) ) |
| 90 | 84 89 33 | sylc | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( ( A ++ B ) ` I ) = (/) ) |
| 91 | 83 90 | eqtr4d | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) |
| 92 | 91 | ex | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( ( # ` A ) + ( # ` B ) ) <_ I -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
| 93 | 68 92 | sylbird | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( -. I < ( ( # ` A ) + ( # ` B ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
| 94 | 93 | com12 | |- ( -. I < ( ( # ` A ) + ( # ` B ) ) -> ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
| 95 | 94 | adantrd | |- ( -. I < ( ( # ` A ) + ( # ` B ) ) -> ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
| 96 | 63 95 | pm2.61i | |- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) |
| 97 | 40 96 | ifeqda | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> if ( I < ( # ` A ) , ( A ` I ) , ( B ` ( I - ( # ` A ) ) ) ) = ( ( A ++ B ) ` I ) ) |
| 98 | 97 | eqcomd | |- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( A ++ B ) ` I ) = if ( I < ( # ` A ) , ( A ` I ) , ( B ` ( I - ( # ` A ) ) ) ) ) |
| 99 | 98 | 3impa | |- ( ( A e. Word V /\ B e. Word V /\ I e. ZZ ) -> ( ( A ++ B ) ` I ) = if ( I < ( # ` A ) , ( A ` I ) , ( B ` ( I - ( # ` A ) ) ) ) ) |