This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), all the D -Cauchy filters are also C -Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | equivcau.1 | ⊢ ( 𝜑 → 𝐶 ∈ ( Met ‘ 𝑋 ) ) | |
| equivcau.2 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| equivcau.3 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| equivcau.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) | ||
| Assertion | equivcfil | ⊢ ( 𝜑 → ( CauFil ‘ 𝐷 ) ⊆ ( CauFil ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equivcau.1 | ⊢ ( 𝜑 → 𝐶 ∈ ( Met ‘ 𝑋 ) ) | |
| 2 | equivcau.2 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | equivcau.3 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 4 | equivcau.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) | |
| 5 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) | |
| 6 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑅 ∈ ℝ+ ) |
| 7 | 5 6 | rpdivcld | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 𝑅 ) ∈ ℝ+ ) |
| 8 | oveq2 | ⊢ ( 𝑠 = ( 𝑟 / 𝑅 ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) = ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑠 = ( 𝑟 / 𝑅 ) → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ∈ 𝑓 ↔ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ∈ 𝑓 ) ) |
| 10 | 9 | rexbidv | ⊢ ( 𝑠 = ( 𝑟 / 𝑅 ) → ( ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ∈ 𝑓 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ∈ 𝑓 ) ) |
| 11 | 10 | rspcv | ⊢ ( ( 𝑟 / 𝑅 ) ∈ ℝ+ → ( ∀ 𝑠 ∈ ℝ+ ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ∈ 𝑓 → ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ∈ 𝑓 ) ) |
| 12 | 7 11 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑠 ∈ ℝ+ ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ∈ 𝑓 → ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ∈ 𝑓 ) ) |
| 13 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) | |
| 14 | eqid | ⊢ ( MetOpen ‘ 𝐶 ) = ( MetOpen ‘ 𝐶 ) | |
| 15 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 16 | 14 15 1 2 3 4 | metss2lem | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
| 17 | 16 | ancom2s | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
| 19 | 18 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
| 20 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ( Met ‘ 𝑋 ) ) |
| 21 | metxmet | ⊢ ( 𝐶 ∈ ( Met ‘ 𝑋 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 23 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 24 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 25 | 24 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝑟 ∈ ℝ* ) |
| 26 | blssm | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑋 ) | |
| 27 | 22 23 25 26 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑋 ) |
| 28 | filss | ⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ∈ 𝑓 ∧ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑋 ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) → ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝑓 ) | |
| 29 | 28 | 3exp2 | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ∈ 𝑓 → ( ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑋 → ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝑓 ) ) ) ) |
| 30 | 29 | com24 | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) → ( ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑋 → ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ∈ 𝑓 → ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝑓 ) ) ) ) |
| 31 | 13 19 27 30 | syl3c | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ∈ 𝑓 → ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝑓 ) ) |
| 32 | 31 | reximdva | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ∈ 𝑓 → ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝑓 ) ) |
| 33 | 12 32 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑠 ∈ ℝ+ ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ∈ 𝑓 → ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝑓 ) ) |
| 34 | 33 | ralrimdva | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) → ( ∀ 𝑠 ∈ ℝ+ ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ∈ 𝑓 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝑓 ) ) |
| 35 | 34 | imdistanda | ⊢ ( 𝜑 → ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ ℝ+ ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ∈ 𝑓 ) → ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝑓 ) ) ) |
| 36 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 37 | iscfil3 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ ℝ+ ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ∈ 𝑓 ) ) ) | |
| 38 | 2 36 37 | 3syl | ⊢ ( 𝜑 → ( 𝑓 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ ℝ+ ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) 𝑠 ) ∈ 𝑓 ) ) ) |
| 39 | iscfil3 | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ ( CauFil ‘ 𝐶 ) ↔ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝑓 ) ) ) | |
| 40 | 1 21 39 | 3syl | ⊢ ( 𝜑 → ( 𝑓 ∈ ( CauFil ‘ 𝐶 ) ↔ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝑓 ) ) ) |
| 41 | 35 38 40 | 3imtr4d | ⊢ ( 𝜑 → ( 𝑓 ∈ ( CauFil ‘ 𝐷 ) → 𝑓 ∈ ( CauFil ‘ 𝐶 ) ) ) |
| 42 | 41 | ssrdv | ⊢ ( 𝜑 → ( CauFil ‘ 𝐷 ) ⊆ ( CauFil ‘ 𝐶 ) ) |