This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is finitely supported from B to A iff the extended function is finitely supported from D to A . (Contributed by Mario Carneiro, 25-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| cantnfrescl.d | ⊢ ( 𝜑 → 𝐷 ∈ On ) | ||
| cantnfrescl.b | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐷 ) | ||
| cantnfrescl.x | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐷 ∖ 𝐵 ) ) → 𝑋 = ∅ ) | ||
| cantnfrescl.a | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | ||
| cantnfrescl.t | ⊢ 𝑇 = dom ( 𝐴 CNF 𝐷 ) | ||
| Assertion | cantnfrescl | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ 𝑆 ↔ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | cantnfrescl.d | ⊢ ( 𝜑 → 𝐷 ∈ On ) | |
| 5 | cantnfrescl.b | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐷 ) | |
| 6 | cantnfrescl.x | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐷 ∖ 𝐵 ) ) → 𝑋 = ∅ ) | |
| 7 | cantnfrescl.a | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | |
| 8 | cantnfrescl.t | ⊢ 𝑇 = dom ( 𝐴 CNF 𝐷 ) | |
| 9 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐷 ∖ 𝐵 ) ) → ∅ ∈ 𝐴 ) |
| 10 | 6 9 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐷 ∖ 𝐵 ) ) → 𝑋 ∈ 𝐴 ) |
| 11 | 10 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 𝐷 ∖ 𝐵 ) 𝑋 ∈ 𝐴 ) |
| 12 | 5 11 | raldifeq | ⊢ ( 𝜑 → ( ∀ 𝑛 ∈ 𝐵 𝑋 ∈ 𝐴 ↔ ∀ 𝑛 ∈ 𝐷 𝑋 ∈ 𝐴 ) ) |
| 13 | eqid | ⊢ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) = ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) | |
| 14 | 13 | fmpt | ⊢ ( ∀ 𝑛 ∈ 𝐵 𝑋 ∈ 𝐴 ↔ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) : 𝐵 ⟶ 𝐴 ) |
| 15 | eqid | ⊢ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) = ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) | |
| 16 | 15 | fmpt | ⊢ ( ∀ 𝑛 ∈ 𝐷 𝑋 ∈ 𝐴 ↔ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) : 𝐷 ⟶ 𝐴 ) |
| 17 | 12 14 16 | 3bitr3g | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) : 𝐵 ⟶ 𝐴 ↔ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) : 𝐷 ⟶ 𝐴 ) ) |
| 18 | 3 | mptexd | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ V ) |
| 19 | funmpt | ⊢ Fun ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) | |
| 20 | 19 | a1i | ⊢ ( 𝜑 → Fun ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ) |
| 21 | 4 | mptexd | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ V ) |
| 22 | funmpt | ⊢ Fun ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) | |
| 23 | 21 22 | jctir | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ V ∧ Fun ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ) ) |
| 24 | 18 20 23 | jca31 | ⊢ ( 𝜑 → ( ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ V ∧ Fun ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ) ∧ ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ V ∧ Fun ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ) ) ) |
| 25 | 4 5 6 | extmptsuppeq | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) |
| 26 | suppeqfsuppbi | ⊢ ( ( ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ V ∧ Fun ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ) ∧ ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ V ∧ Fun ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ) ) → ( ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) finSupp ∅ ↔ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) finSupp ∅ ) ) ) | |
| 27 | 24 25 26 | sylc | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) finSupp ∅ ↔ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) finSupp ∅ ) ) |
| 28 | 17 27 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) : 𝐵 ⟶ 𝐴 ∧ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) finSupp ∅ ) ↔ ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) : 𝐷 ⟶ 𝐴 ∧ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) finSupp ∅ ) ) ) |
| 29 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ 𝑆 ↔ ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) : 𝐵 ⟶ 𝐴 ∧ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) finSupp ∅ ) ) ) |
| 30 | 8 2 4 | cantnfs | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ 𝑇 ↔ ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) : 𝐷 ⟶ 𝐴 ∧ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) finSupp ∅ ) ) ) |
| 31 | 28 29 30 | 3bitr4d | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ 𝑆 ↔ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ 𝑇 ) ) |