This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for canthwe . (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | canthwe.1 | |- O = { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } |
|
| canthwe.2 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
||
| canthwe.3 | |- B = U. dom W |
||
| canthwe.4 | |- C = ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) |
||
| Assertion | canthwelem | |- ( A e. V -> -. F : O -1-1-> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canthwe.1 | |- O = { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } |
|
| 2 | canthwe.2 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| 3 | canthwe.3 | |- B = U. dom W |
|
| 4 | canthwe.4 | |- C = ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) |
|
| 5 | eqid | |- B = B |
|
| 6 | eqid | |- ( W ` B ) = ( W ` B ) |
|
| 7 | 5 6 | pm3.2i | |- ( B = B /\ ( W ` B ) = ( W ` B ) ) |
| 8 | simpl | |- ( ( A e. V /\ F : O -1-1-> A ) -> A e. V ) |
|
| 9 | df-ov | |- ( x F r ) = ( F ` <. x , r >. ) |
|
| 10 | f1f | |- ( F : O -1-1-> A -> F : O --> A ) |
|
| 11 | 10 | ad2antlr | |- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> F : O --> A ) |
| 12 | simpr | |- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) |
|
| 13 | opabidw | |- ( <. x , r >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } <-> ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) |
|
| 14 | 12 13 | sylibr | |- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> <. x , r >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } ) |
| 15 | 14 1 | eleqtrrdi | |- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> <. x , r >. e. O ) |
| 16 | 11 15 | ffvelcdmd | |- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( F ` <. x , r >. ) e. A ) |
| 17 | 9 16 | eqeltrid | |- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
| 18 | 2 8 17 3 | fpwwe2 | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( B W ( W ` B ) /\ ( B F ( W ` B ) ) e. B ) <-> ( B = B /\ ( W ` B ) = ( W ` B ) ) ) ) |
| 19 | 7 18 | mpbiri | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( B W ( W ` B ) /\ ( B F ( W ` B ) ) e. B ) ) |
| 20 | 19 | simprd | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( B F ( W ` B ) ) e. B ) |
| 21 | 4 4 | xpeq12i | |- ( C X. C ) = ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) X. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) ) |
| 22 | 21 | ineq2i | |- ( ( W ` B ) i^i ( C X. C ) ) = ( ( W ` B ) i^i ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) X. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) ) ) |
| 23 | 4 22 | oveq12i | |- ( C F ( ( W ` B ) i^i ( C X. C ) ) ) = ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) F ( ( W ` B ) i^i ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) X. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) ) ) ) |
| 24 | 19 | simpld | |- ( ( A e. V /\ F : O -1-1-> A ) -> B W ( W ` B ) ) |
| 25 | 2 8 24 | fpwwe2lem3 | |- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( B F ( W ` B ) ) e. B ) -> ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) F ( ( W ` B ) i^i ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) X. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) ) ) ) = ( B F ( W ` B ) ) ) |
| 26 | 20 25 | mpdan | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) F ( ( W ` B ) i^i ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) X. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) ) ) ) = ( B F ( W ` B ) ) ) |
| 27 | 23 26 | eqtrid | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( C F ( ( W ` B ) i^i ( C X. C ) ) ) = ( B F ( W ` B ) ) ) |
| 28 | df-ov | |- ( C F ( ( W ` B ) i^i ( C X. C ) ) ) = ( F ` <. C , ( ( W ` B ) i^i ( C X. C ) ) >. ) |
|
| 29 | df-ov | |- ( B F ( W ` B ) ) = ( F ` <. B , ( W ` B ) >. ) |
|
| 30 | 27 28 29 | 3eqtr3g | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( F ` <. C , ( ( W ` B ) i^i ( C X. C ) ) >. ) = ( F ` <. B , ( W ` B ) >. ) ) |
| 31 | simpr | |- ( ( A e. V /\ F : O -1-1-> A ) -> F : O -1-1-> A ) |
|
| 32 | cnvimass | |- ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) C_ dom ( W ` B ) |
|
| 33 | 2 8 | fpwwe2lem2 | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( B W ( W ` B ) <-> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B [. ( `' ( W ` B ) " { y } ) / u ]. ( u F ( ( W ` B ) i^i ( u X. u ) ) ) = y ) ) ) ) |
| 34 | 24 33 | mpbid | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B [. ( `' ( W ` B ) " { y } ) / u ]. ( u F ( ( W ` B ) i^i ( u X. u ) ) ) = y ) ) ) |
| 35 | 34 | simpld | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) ) |
| 36 | 35 | simprd | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( W ` B ) C_ ( B X. B ) ) |
| 37 | dmss | |- ( ( W ` B ) C_ ( B X. B ) -> dom ( W ` B ) C_ dom ( B X. B ) ) |
|
| 38 | 36 37 | syl | |- ( ( A e. V /\ F : O -1-1-> A ) -> dom ( W ` B ) C_ dom ( B X. B ) ) |
| 39 | dmxpss | |- dom ( B X. B ) C_ B |
|
| 40 | 38 39 | sstrdi | |- ( ( A e. V /\ F : O -1-1-> A ) -> dom ( W ` B ) C_ B ) |
| 41 | 32 40 | sstrid | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) C_ B ) |
| 42 | 4 41 | eqsstrid | |- ( ( A e. V /\ F : O -1-1-> A ) -> C C_ B ) |
| 43 | 35 | simpld | |- ( ( A e. V /\ F : O -1-1-> A ) -> B C_ A ) |
| 44 | 42 43 | sstrd | |- ( ( A e. V /\ F : O -1-1-> A ) -> C C_ A ) |
| 45 | inss2 | |- ( ( W ` B ) i^i ( C X. C ) ) C_ ( C X. C ) |
|
| 46 | 45 | a1i | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( W ` B ) i^i ( C X. C ) ) C_ ( C X. C ) ) |
| 47 | 34 | simprd | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( W ` B ) We B /\ A. y e. B [. ( `' ( W ` B ) " { y } ) / u ]. ( u F ( ( W ` B ) i^i ( u X. u ) ) ) = y ) ) |
| 48 | 47 | simpld | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( W ` B ) We B ) |
| 49 | wess | |- ( C C_ B -> ( ( W ` B ) We B -> ( W ` B ) We C ) ) |
|
| 50 | 42 48 49 | sylc | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( W ` B ) We C ) |
| 51 | weinxp | |- ( ( W ` B ) We C <-> ( ( W ` B ) i^i ( C X. C ) ) We C ) |
|
| 52 | 50 51 | sylib | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( W ` B ) i^i ( C X. C ) ) We C ) |
| 53 | fvex | |- ( W ` B ) e. _V |
|
| 54 | 53 | cnvex | |- `' ( W ` B ) e. _V |
| 55 | 54 | imaex | |- ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) e. _V |
| 56 | 4 55 | eqeltri | |- C e. _V |
| 57 | 53 | inex1 | |- ( ( W ` B ) i^i ( C X. C ) ) e. _V |
| 58 | simpl | |- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> x = C ) |
|
| 59 | 58 | sseq1d | |- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> ( x C_ A <-> C C_ A ) ) |
| 60 | simpr | |- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> r = ( ( W ` B ) i^i ( C X. C ) ) ) |
|
| 61 | 58 | sqxpeqd | |- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> ( x X. x ) = ( C X. C ) ) |
| 62 | 60 61 | sseq12d | |- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> ( r C_ ( x X. x ) <-> ( ( W ` B ) i^i ( C X. C ) ) C_ ( C X. C ) ) ) |
| 63 | 60 58 | weeq12d | |- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> ( r We x <-> ( ( W ` B ) i^i ( C X. C ) ) We C ) ) |
| 64 | 59 62 63 | 3anbi123d | |- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) <-> ( C C_ A /\ ( ( W ` B ) i^i ( C X. C ) ) C_ ( C X. C ) /\ ( ( W ` B ) i^i ( C X. C ) ) We C ) ) ) |
| 65 | 56 57 64 | opelopaba | |- ( <. C , ( ( W ` B ) i^i ( C X. C ) ) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } <-> ( C C_ A /\ ( ( W ` B ) i^i ( C X. C ) ) C_ ( C X. C ) /\ ( ( W ` B ) i^i ( C X. C ) ) We C ) ) |
| 66 | 44 46 52 65 | syl3anbrc | |- ( ( A e. V /\ F : O -1-1-> A ) -> <. C , ( ( W ` B ) i^i ( C X. C ) ) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } ) |
| 67 | 66 1 | eleqtrrdi | |- ( ( A e. V /\ F : O -1-1-> A ) -> <. C , ( ( W ` B ) i^i ( C X. C ) ) >. e. O ) |
| 68 | 8 43 | ssexd | |- ( ( A e. V /\ F : O -1-1-> A ) -> B e. _V ) |
| 69 | 53 | a1i | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( W ` B ) e. _V ) |
| 70 | simpl | |- ( ( x = B /\ r = ( W ` B ) ) -> x = B ) |
|
| 71 | 70 | sseq1d | |- ( ( x = B /\ r = ( W ` B ) ) -> ( x C_ A <-> B C_ A ) ) |
| 72 | simpr | |- ( ( x = B /\ r = ( W ` B ) ) -> r = ( W ` B ) ) |
|
| 73 | 70 | sqxpeqd | |- ( ( x = B /\ r = ( W ` B ) ) -> ( x X. x ) = ( B X. B ) ) |
| 74 | 72 73 | sseq12d | |- ( ( x = B /\ r = ( W ` B ) ) -> ( r C_ ( x X. x ) <-> ( W ` B ) C_ ( B X. B ) ) ) |
| 75 | 72 70 | weeq12d | |- ( ( x = B /\ r = ( W ` B ) ) -> ( r We x <-> ( W ` B ) We B ) ) |
| 76 | 71 74 75 | 3anbi123d | |- ( ( x = B /\ r = ( W ` B ) ) -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) <-> ( B C_ A /\ ( W ` B ) C_ ( B X. B ) /\ ( W ` B ) We B ) ) ) |
| 77 | 76 | opelopabga | |- ( ( B e. _V /\ ( W ` B ) e. _V ) -> ( <. B , ( W ` B ) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } <-> ( B C_ A /\ ( W ` B ) C_ ( B X. B ) /\ ( W ` B ) We B ) ) ) |
| 78 | 68 69 77 | syl2anc | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( <. B , ( W ` B ) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } <-> ( B C_ A /\ ( W ` B ) C_ ( B X. B ) /\ ( W ` B ) We B ) ) ) |
| 79 | 43 36 48 78 | mpbir3and | |- ( ( A e. V /\ F : O -1-1-> A ) -> <. B , ( W ` B ) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } ) |
| 80 | 79 1 | eleqtrrdi | |- ( ( A e. V /\ F : O -1-1-> A ) -> <. B , ( W ` B ) >. e. O ) |
| 81 | f1fveq | |- ( ( F : O -1-1-> A /\ ( <. C , ( ( W ` B ) i^i ( C X. C ) ) >. e. O /\ <. B , ( W ` B ) >. e. O ) ) -> ( ( F ` <. C , ( ( W ` B ) i^i ( C X. C ) ) >. ) = ( F ` <. B , ( W ` B ) >. ) <-> <. C , ( ( W ` B ) i^i ( C X. C ) ) >. = <. B , ( W ` B ) >. ) ) |
|
| 82 | 31 67 80 81 | syl12anc | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( F ` <. C , ( ( W ` B ) i^i ( C X. C ) ) >. ) = ( F ` <. B , ( W ` B ) >. ) <-> <. C , ( ( W ` B ) i^i ( C X. C ) ) >. = <. B , ( W ` B ) >. ) ) |
| 83 | 30 82 | mpbid | |- ( ( A e. V /\ F : O -1-1-> A ) -> <. C , ( ( W ` B ) i^i ( C X. C ) ) >. = <. B , ( W ` B ) >. ) |
| 84 | 56 57 | opth1 | |- ( <. C , ( ( W ` B ) i^i ( C X. C ) ) >. = <. B , ( W ` B ) >. -> C = B ) |
| 85 | 83 84 | syl | |- ( ( A e. V /\ F : O -1-1-> A ) -> C = B ) |
| 86 | 20 85 | eleqtrrd | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( B F ( W ` B ) ) e. C ) |
| 87 | 86 4 | eleqtrdi | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( B F ( W ` B ) ) e. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) ) |
| 88 | ovex | |- ( B F ( W ` B ) ) e. _V |
|
| 89 | 88 | eliniseg | |- ( ( B F ( W ` B ) ) e. B -> ( ( B F ( W ` B ) ) e. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) <-> ( B F ( W ` B ) ) ( W ` B ) ( B F ( W ` B ) ) ) ) |
| 90 | 20 89 | syl | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( B F ( W ` B ) ) e. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) <-> ( B F ( W ` B ) ) ( W ` B ) ( B F ( W ` B ) ) ) ) |
| 91 | 87 90 | mpbid | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( B F ( W ` B ) ) ( W ` B ) ( B F ( W ` B ) ) ) |
| 92 | weso | |- ( ( W ` B ) We B -> ( W ` B ) Or B ) |
|
| 93 | 48 92 | syl | |- ( ( A e. V /\ F : O -1-1-> A ) -> ( W ` B ) Or B ) |
| 94 | sonr | |- ( ( ( W ` B ) Or B /\ ( B F ( W ` B ) ) e. B ) -> -. ( B F ( W ` B ) ) ( W ` B ) ( B F ( W ` B ) ) ) |
|
| 95 | 93 20 94 | syl2anc | |- ( ( A e. V /\ F : O -1-1-> A ) -> -. ( B F ( W ` B ) ) ( W ` B ) ( B F ( W ` B ) ) ) |
| 96 | 91 95 | pm2.65da | |- ( A e. V -> -. F : O -1-1-> A ) |