This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for canthnum . (Contributed by Mario Carneiro, 19-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | canth4.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } | |
| canth4.2 | ⊢ 𝐵 = ∪ dom 𝑊 | ||
| canth4.3 | ⊢ 𝐶 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐹 ‘ 𝐵 ) } ) | ||
| Assertion | canthnumlem | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth4.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } | |
| 2 | canth4.2 | ⊢ 𝐵 = ∪ dom 𝑊 | |
| 3 | canth4.3 | ⊢ 𝐶 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐹 ‘ 𝐵 ) } ) | |
| 4 | f1f | ⊢ ( 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 → 𝐹 : ( 𝒫 𝐴 ∩ dom card ) ⟶ 𝐴 ) | |
| 5 | ssid | ⊢ ( 𝒫 𝐴 ∩ dom card ) ⊆ ( 𝒫 𝐴 ∩ dom card ) | |
| 6 | 1 2 3 | canth4 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ ( 𝒫 𝐴 ∩ dom card ) ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊊ 𝐵 ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) ) |
| 7 | 5 6 | mp3an3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) ⟶ 𝐴 ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊊ 𝐵 ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) ) |
| 8 | 4 7 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊊ 𝐵 ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) ) |
| 9 | 8 | simp3d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) |
| 10 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) | |
| 11 | 8 | simp1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 12 | elpw2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
| 14 | 11 13 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 ∈ 𝒫 𝐴 ) |
| 15 | eqid | ⊢ 𝐵 = 𝐵 | |
| 16 | eqid | ⊢ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) | |
| 17 | 15 16 | pm3.2i | ⊢ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) |
| 18 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐴 ∈ 𝑉 ) | |
| 19 | 10 4 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐹 : ( 𝒫 𝐴 ∩ dom card ) ⟶ 𝐴 ) |
| 20 | 19 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ dom card ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) |
| 21 | 1 18 20 2 | fpwwe | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐵 ) ↔ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) ) ) |
| 22 | 17 21 | mpbiri | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐵 ) ) |
| 23 | 22 | simpld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ) |
| 24 | 1 18 | fpwwelem | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) ) ) ) |
| 25 | 23 24 | mpbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) ) ) |
| 26 | 25 | simprld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) We 𝐵 ) |
| 27 | fvex | ⊢ ( 𝑊 ‘ 𝐵 ) ∈ V | |
| 28 | weeq1 | ⊢ ( 𝑟 = ( 𝑊 ‘ 𝐵 ) → ( 𝑟 We 𝐵 ↔ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) | |
| 29 | 27 28 | spcev | ⊢ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 → ∃ 𝑟 𝑟 We 𝐵 ) |
| 30 | 26 29 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ∃ 𝑟 𝑟 We 𝐵 ) |
| 31 | ween | ⊢ ( 𝐵 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐵 ) | |
| 32 | 30 31 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 ∈ dom card ) |
| 33 | 14 32 | elind | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 ∈ ( 𝒫 𝐴 ∩ dom card ) ) |
| 34 | 8 | simp2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ⊊ 𝐵 ) |
| 35 | 34 | pssssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ⊆ 𝐵 ) |
| 36 | 35 11 | sstrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ⊆ 𝐴 ) |
| 37 | elpw2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐶 ∈ 𝒫 𝐴 ↔ 𝐶 ⊆ 𝐴 ) ) | |
| 38 | 37 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝐶 ∈ 𝒫 𝐴 ↔ 𝐶 ⊆ 𝐴 ) ) |
| 39 | 36 38 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ∈ 𝒫 𝐴 ) |
| 40 | ssnum | ⊢ ( ( 𝐵 ∈ dom card ∧ 𝐶 ⊆ 𝐵 ) → 𝐶 ∈ dom card ) | |
| 41 | 32 35 40 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ∈ dom card ) |
| 42 | 39 41 | elind | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ∈ ( 𝒫 𝐴 ∩ dom card ) ) |
| 43 | f1fveq | ⊢ ( ( 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ∧ ( 𝐵 ∈ ( 𝒫 𝐴 ∩ dom card ) ∧ 𝐶 ∈ ( 𝒫 𝐴 ∩ dom card ) ) ) → ( ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) | |
| 44 | 10 33 42 43 | syl12anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| 45 | 9 44 | mpbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 = 𝐶 ) |
| 46 | 34 | pssned | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ≠ 𝐵 ) |
| 47 | 46 | necomd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 ≠ 𝐶 ) |
| 48 | 47 | neneqd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ¬ 𝐵 = 𝐶 ) |
| 49 | 45 48 | pm2.65da | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) |