This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of well-orderable subsets of a set A strictly dominates A . A stronger form of canth2 . Corollary 1.4(a) of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 19-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | canthnum | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ ( 𝒫 𝐴 ∩ dom card ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 2 | inex1g | ⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) | |
| 3 | infpwfidom | ⊢ ( ( 𝒫 𝐴 ∩ Fin ) ∈ V → 𝐴 ≼ ( 𝒫 𝐴 ∩ Fin ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ ( 𝒫 𝐴 ∩ Fin ) ) |
| 5 | inex1g | ⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∩ dom card ) ∈ V ) | |
| 6 | 1 5 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ∩ dom card ) ∈ V ) |
| 7 | finnum | ⊢ ( 𝑥 ∈ Fin → 𝑥 ∈ dom card ) | |
| 8 | 7 | ssriv | ⊢ Fin ⊆ dom card |
| 9 | sslin | ⊢ ( Fin ⊆ dom card → ( 𝒫 𝐴 ∩ Fin ) ⊆ ( 𝒫 𝐴 ∩ dom card ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( 𝒫 𝐴 ∩ Fin ) ⊆ ( 𝒫 𝐴 ∩ dom card ) |
| 11 | ssdomg | ⊢ ( ( 𝒫 𝐴 ∩ dom card ) ∈ V → ( ( 𝒫 𝐴 ∩ Fin ) ⊆ ( 𝒫 𝐴 ∩ dom card ) → ( 𝒫 𝐴 ∩ Fin ) ≼ ( 𝒫 𝐴 ∩ dom card ) ) ) | |
| 12 | 6 10 11 | mpisyl | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ∩ Fin ) ≼ ( 𝒫 𝐴 ∩ dom card ) ) |
| 13 | domtr | ⊢ ( ( 𝐴 ≼ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝒫 𝐴 ∩ Fin ) ≼ ( 𝒫 𝐴 ∩ dom card ) ) → 𝐴 ≼ ( 𝒫 𝐴 ∩ dom card ) ) | |
| 14 | 4 12 13 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ ( 𝒫 𝐴 ∩ dom card ) ) |
| 15 | eqid | ⊢ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } | |
| 16 | 15 | fpwwecbv | ⊢ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑓 ‘ ( ◡ 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) } |
| 17 | eqid | ⊢ ∪ dom { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } = ∪ dom { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } | |
| 18 | eqid | ⊢ ( ◡ ( { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } ‘ ∪ dom { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } ) “ { ( 𝑓 ‘ ∪ dom { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } ) } ) = ( ◡ ( { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } ‘ ∪ dom { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } ) “ { ( 𝑓 ‘ ∪ dom { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } ) } ) | |
| 19 | 16 17 18 | canthnumlem | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) |
| 20 | f1of1 | ⊢ ( 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1-onto→ 𝐴 → 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) | |
| 21 | 19 20 | nsyl | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1-onto→ 𝐴 ) |
| 22 | 21 | nexdv | ⊢ ( 𝐴 ∈ 𝑉 → ¬ ∃ 𝑓 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1-onto→ 𝐴 ) |
| 23 | ensym | ⊢ ( 𝐴 ≈ ( 𝒫 𝐴 ∩ dom card ) → ( 𝒫 𝐴 ∩ dom card ) ≈ 𝐴 ) | |
| 24 | bren | ⊢ ( ( 𝒫 𝐴 ∩ dom card ) ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1-onto→ 𝐴 ) | |
| 25 | 23 24 | sylib | ⊢ ( 𝐴 ≈ ( 𝒫 𝐴 ∩ dom card ) → ∃ 𝑓 𝑓 : ( 𝒫 𝐴 ∩ dom card ) –1-1-onto→ 𝐴 ) |
| 26 | 22 25 | nsyl | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝐴 ≈ ( 𝒫 𝐴 ∩ dom card ) ) |
| 27 | brsdom | ⊢ ( 𝐴 ≺ ( 𝒫 𝐴 ∩ dom card ) ↔ ( 𝐴 ≼ ( 𝒫 𝐴 ∩ dom card ) ∧ ¬ 𝐴 ≈ ( 𝒫 𝐴 ∩ dom card ) ) ) | |
| 28 | 14 26 27 | sylanbrc | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ ( 𝒫 𝐴 ∩ dom card ) ) |