This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for canthnum . (Contributed by Mario Carneiro, 19-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | canth4.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) } |
|
| canth4.2 | |- B = U. dom W |
||
| canth4.3 | |- C = ( `' ( W ` B ) " { ( F ` B ) } ) |
||
| Assertion | canthnumlem | |- ( A e. V -> -. F : ( ~P A i^i dom card ) -1-1-> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth4.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) } |
|
| 2 | canth4.2 | |- B = U. dom W |
|
| 3 | canth4.3 | |- C = ( `' ( W ` B ) " { ( F ` B ) } ) |
|
| 4 | f1f | |- ( F : ( ~P A i^i dom card ) -1-1-> A -> F : ( ~P A i^i dom card ) --> A ) |
|
| 5 | ssid | |- ( ~P A i^i dom card ) C_ ( ~P A i^i dom card ) |
|
| 6 | 1 2 3 | canth4 | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) --> A /\ ( ~P A i^i dom card ) C_ ( ~P A i^i dom card ) ) -> ( B C_ A /\ C C. B /\ ( F ` B ) = ( F ` C ) ) ) |
| 7 | 5 6 | mp3an3 | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) --> A ) -> ( B C_ A /\ C C. B /\ ( F ` B ) = ( F ` C ) ) ) |
| 8 | 4 7 | sylan2 | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( B C_ A /\ C C. B /\ ( F ` B ) = ( F ` C ) ) ) |
| 9 | 8 | simp3d | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( F ` B ) = ( F ` C ) ) |
| 10 | simpr | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> F : ( ~P A i^i dom card ) -1-1-> A ) |
|
| 11 | 8 | simp1d | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B C_ A ) |
| 12 | elpw2g | |- ( A e. V -> ( B e. ~P A <-> B C_ A ) ) |
|
| 13 | 12 | adantr | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( B e. ~P A <-> B C_ A ) ) |
| 14 | 11 13 | mpbird | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B e. ~P A ) |
| 15 | eqid | |- B = B |
|
| 16 | eqid | |- ( W ` B ) = ( W ` B ) |
|
| 17 | 15 16 | pm3.2i | |- ( B = B /\ ( W ` B ) = ( W ` B ) ) |
| 18 | simpl | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> A e. V ) |
|
| 19 | 10 4 | syl | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> F : ( ~P A i^i dom card ) --> A ) |
| 20 | 19 | ffvelcdmda | |- ( ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) /\ x e. ( ~P A i^i dom card ) ) -> ( F ` x ) e. A ) |
| 21 | 1 18 20 2 | fpwwe | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( ( B W ( W ` B ) /\ ( F ` B ) e. B ) <-> ( B = B /\ ( W ` B ) = ( W ` B ) ) ) ) |
| 22 | 17 21 | mpbiri | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( B W ( W ` B ) /\ ( F ` B ) e. B ) ) |
| 23 | 22 | simpld | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B W ( W ` B ) ) |
| 24 | 1 18 | fpwwelem | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( B W ( W ` B ) <-> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B ( F ` ( `' ( W ` B ) " { y } ) ) = y ) ) ) ) |
| 25 | 23 24 | mpbid | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B ( F ` ( `' ( W ` B ) " { y } ) ) = y ) ) ) |
| 26 | 25 | simprld | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( W ` B ) We B ) |
| 27 | fvex | |- ( W ` B ) e. _V |
|
| 28 | weeq1 | |- ( r = ( W ` B ) -> ( r We B <-> ( W ` B ) We B ) ) |
|
| 29 | 27 28 | spcev | |- ( ( W ` B ) We B -> E. r r We B ) |
| 30 | 26 29 | syl | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> E. r r We B ) |
| 31 | ween | |- ( B e. dom card <-> E. r r We B ) |
|
| 32 | 30 31 | sylibr | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B e. dom card ) |
| 33 | 14 32 | elind | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B e. ( ~P A i^i dom card ) ) |
| 34 | 8 | simp2d | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C C. B ) |
| 35 | 34 | pssssd | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C C_ B ) |
| 36 | 35 11 | sstrd | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C C_ A ) |
| 37 | elpw2g | |- ( A e. V -> ( C e. ~P A <-> C C_ A ) ) |
|
| 38 | 37 | adantr | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( C e. ~P A <-> C C_ A ) ) |
| 39 | 36 38 | mpbird | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C e. ~P A ) |
| 40 | ssnum | |- ( ( B e. dom card /\ C C_ B ) -> C e. dom card ) |
|
| 41 | 32 35 40 | syl2anc | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C e. dom card ) |
| 42 | 39 41 | elind | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C e. ( ~P A i^i dom card ) ) |
| 43 | f1fveq | |- ( ( F : ( ~P A i^i dom card ) -1-1-> A /\ ( B e. ( ~P A i^i dom card ) /\ C e. ( ~P A i^i dom card ) ) ) -> ( ( F ` B ) = ( F ` C ) <-> B = C ) ) |
|
| 44 | 10 33 42 43 | syl12anc | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( ( F ` B ) = ( F ` C ) <-> B = C ) ) |
| 45 | 9 44 | mpbid | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B = C ) |
| 46 | 34 | pssned | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C =/= B ) |
| 47 | 46 | necomd | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B =/= C ) |
| 48 | 47 | neneqd | |- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> -. B = C ) |
| 49 | 45 48 | pm2.65da | |- ( A e. V -> -. F : ( ~P A i^i dom card ) -1-1-> A ) |