This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No set A is equinumerous to its power set (Cantor's theorem), i.e., no function can map A onto its power set. Compare Theorem 6B(b) of Enderton p. 132. For the equinumerosity version, see canth2 . Note that A must be a set: this theorem does not hold when A is too large to be a set; see ncanth for a counterexample. (Use nex if you want the form -. E. f f : A -onto-> ~P A .) (Contributed by NM, 7-Aug-1994) (Proof shortened by Mario Carneiro, 7-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | canth.1 | ⊢ 𝐴 ∈ V | |
| Assertion | canth | ⊢ ¬ 𝐹 : 𝐴 –onto→ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth.1 | ⊢ 𝐴 ∈ V | |
| 2 | ssrab2 | ⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ⊆ 𝐴 | |
| 3 | 1 2 | elpwi2 | ⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ∈ 𝒫 𝐴 |
| 4 | forn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝒫 𝐴 → ran 𝐹 = 𝒫 𝐴 ) | |
| 5 | 3 4 | eleqtrrid | ⊢ ( 𝐹 : 𝐴 –onto→ 𝒫 𝐴 → { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ∈ ran 𝐹 ) |
| 6 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 7 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 8 | 6 7 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 | 8 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) ↔ ¬ 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 10 | 9 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 11 | 10 | baibr | ⊢ ( 𝑦 ∈ 𝐴 → ( ¬ 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ) |
| 12 | nbbn | ⊢ ( ( ¬ 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ↔ ¬ ( 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ) | |
| 13 | 11 12 | sylib | ⊢ ( 𝑦 ∈ 𝐴 → ¬ ( 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ) |
| 14 | eleq2 | ⊢ ( ( 𝐹 ‘ 𝑦 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } → ( 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ) | |
| 15 | 13 14 | nsyl | ⊢ ( 𝑦 ∈ 𝐴 → ¬ ( 𝐹 ‘ 𝑦 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) |
| 16 | 15 | nrex | ⊢ ¬ ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } |
| 17 | fofn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝒫 𝐴 → 𝐹 Fn 𝐴 ) | |
| 18 | fvelrnb | ⊢ ( 𝐹 Fn 𝐴 → ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝐹 : 𝐴 –onto→ 𝒫 𝐴 → ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ) |
| 20 | 16 19 | mtbiri | ⊢ ( 𝐹 : 𝐴 –onto→ 𝒫 𝐴 → ¬ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ∈ ran 𝐹 ) |
| 21 | 5 20 | pm2.65i | ⊢ ¬ 𝐹 : 𝐴 –onto→ 𝒫 𝐴 |