This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a non-unital ring homomorphism from any non-unital ring to the zero ring. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c0rhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| c0rhm.0 | ⊢ 0 = ( 0g ‘ 𝑇 ) | ||
| c0rhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | ||
| Assertion | c0rnghm | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑆 RngHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0rhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | c0rhm.0 | ⊢ 0 = ( 0g ‘ 𝑇 ) | |
| 3 | c0rhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | |
| 4 | ringssrng | ⊢ Ring ⊆ Rng | |
| 5 | 4 | a1i | ⊢ ( 𝑆 ∈ Rng → Ring ⊆ Rng ) |
| 6 | 5 | ssdifssd | ⊢ ( 𝑆 ∈ Rng → ( Ring ∖ NzRing ) ⊆ Rng ) |
| 7 | 6 | sseld | ⊢ ( 𝑆 ∈ Rng → ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Rng ) ) |
| 8 | 7 | imdistani | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑆 ∈ Rng ∧ 𝑇 ∈ Rng ) ) |
| 9 | rngabl | ⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Abel ) | |
| 10 | ablgrp | ⊢ ( 𝑆 ∈ Abel → 𝑆 ∈ Grp ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Grp ) |
| 12 | eldifi | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Ring ) | |
| 13 | ringgrp | ⊢ ( 𝑇 ∈ Ring → 𝑇 ∈ Grp ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Grp ) |
| 15 | 1 2 3 | c0ghm | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 16 | 11 14 15 | syl2an | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 17 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 18 | eqid | ⊢ ( 1r ‘ 𝑇 ) = ( 1r ‘ 𝑇 ) | |
| 19 | 17 2 18 | 0ring1eq0 | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( 1r ‘ 𝑇 ) = 0 ) |
| 20 | 19 | eqcomd | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 0 = ( 1r ‘ 𝑇 ) ) |
| 21 | 20 | mpteq2dv | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( 𝑥 ∈ 𝐵 ↦ 0 ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ 𝐵 ↦ 0 ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
| 23 | 3 22 | eqtrid | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
| 24 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 25 | 24 | rngmgp | ⊢ ( 𝑆 ∈ Rng → ( mulGrp ‘ 𝑆 ) ∈ Smgrp ) |
| 26 | sgrpmgm | ⊢ ( ( mulGrp ‘ 𝑆 ) ∈ Smgrp → ( mulGrp ‘ 𝑆 ) ∈ Mgm ) | |
| 27 | 25 26 | syl | ⊢ ( 𝑆 ∈ Rng → ( mulGrp ‘ 𝑆 ) ∈ Mgm ) |
| 28 | eqid | ⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) | |
| 29 | 28 | ringmgp | ⊢ ( 𝑇 ∈ Ring → ( mulGrp ‘ 𝑇 ) ∈ Mnd ) |
| 30 | 12 29 | syl | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( mulGrp ‘ 𝑇 ) ∈ Mnd ) |
| 31 | 24 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
| 32 | 28 18 | ringidval | ⊢ ( 1r ‘ 𝑇 ) = ( 0g ‘ ( mulGrp ‘ 𝑇 ) ) |
| 33 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) | |
| 34 | 31 32 33 | c0mgm | ⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ Mgm ∧ ( mulGrp ‘ 𝑇 ) ∈ Mnd ) → ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) |
| 35 | 27 30 34 | syl2an | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) |
| 36 | 23 35 | eqeltrd | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) |
| 37 | 16 36 | jca | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) ) |
| 38 | 24 28 | isrnghmmul | ⊢ ( 𝐻 ∈ ( 𝑆 RngHom 𝑇 ) ↔ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ Rng ) ∧ ( 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) ) ) |
| 39 | 8 37 38 | sylanbrc | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑆 RngHom 𝑇 ) ) |