This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a magma homomorphism into a monoid. Remark: Instead of the assumption that T is a monoid, it would be sufficient that T is a magma with a right or left identity. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c0mhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| c0mhm.0 | ⊢ 0 = ( 0g ‘ 𝑇 ) | ||
| c0mhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | ||
| Assertion | c0mgm | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → 𝐻 ∈ ( 𝑆 MgmHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0mhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | c0mhm.0 | ⊢ 0 = ( 0g ‘ 𝑇 ) | |
| 3 | c0mhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | |
| 4 | mndmgm | ⊢ ( 𝑇 ∈ Mnd → 𝑇 ∈ Mgm ) | |
| 5 | 4 | anim2i | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 7 | 6 2 | mndidcl | ⊢ ( 𝑇 ∈ Mnd → 0 ∈ ( Base ‘ 𝑇 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → 0 ∈ ( Base ‘ 𝑇 ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ) → 0 ∈ ( Base ‘ 𝑇 ) ) |
| 10 | 9 3 | fmptd | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
| 11 | 7 | ancli | ⊢ ( 𝑇 ∈ Mnd → ( 𝑇 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝑇 ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ( 𝑇 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝑇 ) ) ) |
| 13 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 14 | 6 13 2 | mndlid | ⊢ ( ( 𝑇 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝑇 ) ) → ( 0 ( +g ‘ 𝑇 ) 0 ) = 0 ) |
| 15 | 12 14 | syl | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ( 0 ( +g ‘ 𝑇 ) 0 ) = 0 ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 0 ( +g ‘ 𝑇 ) 0 ) = 0 ) |
| 17 | 3 | a1i | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) ) |
| 18 | eqidd | ⊢ ( ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑥 = 𝑎 ) → 0 = 0 ) | |
| 19 | simprl | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) | |
| 20 | 8 | adantr | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 0 ∈ ( Base ‘ 𝑇 ) ) |
| 21 | 17 18 19 20 | fvmptd | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐻 ‘ 𝑎 ) = 0 ) |
| 22 | eqidd | ⊢ ( ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑥 = 𝑏 ) → 0 = 0 ) | |
| 23 | simprr | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) | |
| 24 | 17 22 23 20 | fvmptd | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐻 ‘ 𝑏 ) = 0 ) |
| 25 | 21 24 | oveq12d | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐻 ‘ 𝑏 ) ) = ( 0 ( +g ‘ 𝑇 ) 0 ) ) |
| 26 | eqidd | ⊢ ( ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑥 = ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) → 0 = 0 ) | |
| 27 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 28 | 1 27 | mgmcl | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ 𝐵 ) |
| 29 | 28 | 3expb | ⊢ ( ( 𝑆 ∈ Mgm ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ 𝐵 ) |
| 30 | 29 | adantlr | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ 𝐵 ) |
| 31 | 17 26 30 20 | fvmptd | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = 0 ) |
| 32 | 16 25 31 | 3eqtr4rd | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐻 ‘ 𝑏 ) ) ) |
| 33 | 32 | ralrimivva | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐻 ‘ 𝑏 ) ) ) |
| 34 | 10 33 | jca | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐻 ‘ 𝑏 ) ) ) ) |
| 35 | 1 6 27 13 | ismgmhm | ⊢ ( 𝐻 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐻 ‘ 𝑏 ) ) ) ) ) |
| 36 | 5 34 35 | sylanbrc | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → 𝐻 ∈ ( 𝑆 MgmHom 𝑇 ) ) |