This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a zero ring, a ring which is not a nonzero ring, the ring unity equals the zero element. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| 0ring01eq.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | 0ring1eq0 | ⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) → 1 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | 0ring01eq.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | eldif | ⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) ↔ ( 𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing ) ) | |
| 5 | 0ringnnzr | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ↔ ¬ 𝑅 ∈ NzRing ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 7 | 6 2 3 | 0ring01eq | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) → 0 = 1 ) |
| 8 | 7 | eqcomd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) → 1 = 0 ) |
| 9 | 8 | ex | ⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 → 1 = 0 ) ) |
| 10 | 5 9 | sylbird | ⊢ ( 𝑅 ∈ Ring → ( ¬ 𝑅 ∈ NzRing → 1 = 0 ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing ) → 1 = 0 ) |
| 12 | 4 11 | sylbi | ⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) → 1 = 0 ) |