This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c0mhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| c0mhm.0 | ⊢ 0 = ( 0g ‘ 𝑇 ) | ||
| c0mhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | ||
| Assertion | c0ghm | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0mhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | c0mhm.0 | ⊢ 0 = ( 0g ‘ 𝑇 ) | |
| 3 | c0mhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | |
| 4 | grpmnd | ⊢ ( 𝑆 ∈ Grp → 𝑆 ∈ Mnd ) | |
| 5 | grpmnd | ⊢ ( 𝑇 ∈ Grp → 𝑇 ∈ Mnd ) | |
| 6 | 4 5 | anim12i | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ) |
| 7 | 1 2 3 | c0mhm | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → 𝐻 ∈ ( 𝑆 MndHom 𝑇 ) ) |
| 8 | 6 7 | syl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → 𝐻 ∈ ( 𝑆 MndHom 𝑇 ) ) |
| 9 | ghmmhmb | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑆 GrpHom 𝑇 ) = ( 𝑆 MndHom 𝑇 ) ) | |
| 10 | 9 | eleq2d | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐻 ∈ ( 𝑆 MndHom 𝑇 ) ) ) |
| 11 | 8 10 | mpbird | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ) |