This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a non-unital ring homomorphism from any non-unital ring to the zero ring. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c0rhm.b | |- B = ( Base ` S ) |
|
| c0rhm.0 | |- .0. = ( 0g ` T ) |
||
| c0rhm.h | |- H = ( x e. B |-> .0. ) |
||
| Assertion | c0rnghm | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H e. ( S RngHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0rhm.b | |- B = ( Base ` S ) |
|
| 2 | c0rhm.0 | |- .0. = ( 0g ` T ) |
|
| 3 | c0rhm.h | |- H = ( x e. B |-> .0. ) |
|
| 4 | ringssrng | |- Ring C_ Rng |
|
| 5 | 4 | a1i | |- ( S e. Rng -> Ring C_ Rng ) |
| 6 | 5 | ssdifssd | |- ( S e. Rng -> ( Ring \ NzRing ) C_ Rng ) |
| 7 | 6 | sseld | |- ( S e. Rng -> ( T e. ( Ring \ NzRing ) -> T e. Rng ) ) |
| 8 | 7 | imdistani | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( S e. Rng /\ T e. Rng ) ) |
| 9 | rngabl | |- ( S e. Rng -> S e. Abel ) |
|
| 10 | ablgrp | |- ( S e. Abel -> S e. Grp ) |
|
| 11 | 9 10 | syl | |- ( S e. Rng -> S e. Grp ) |
| 12 | eldifi | |- ( T e. ( Ring \ NzRing ) -> T e. Ring ) |
|
| 13 | ringgrp | |- ( T e. Ring -> T e. Grp ) |
|
| 14 | 12 13 | syl | |- ( T e. ( Ring \ NzRing ) -> T e. Grp ) |
| 15 | 1 2 3 | c0ghm | |- ( ( S e. Grp /\ T e. Grp ) -> H e. ( S GrpHom T ) ) |
| 16 | 11 14 15 | syl2an | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H e. ( S GrpHom T ) ) |
| 17 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 18 | eqid | |- ( 1r ` T ) = ( 1r ` T ) |
|
| 19 | 17 2 18 | 0ring1eq0 | |- ( T e. ( Ring \ NzRing ) -> ( 1r ` T ) = .0. ) |
| 20 | 19 | eqcomd | |- ( T e. ( Ring \ NzRing ) -> .0. = ( 1r ` T ) ) |
| 21 | 20 | mpteq2dv | |- ( T e. ( Ring \ NzRing ) -> ( x e. B |-> .0. ) = ( x e. B |-> ( 1r ` T ) ) ) |
| 22 | 21 | adantl | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( x e. B |-> .0. ) = ( x e. B |-> ( 1r ` T ) ) ) |
| 23 | 3 22 | eqtrid | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H = ( x e. B |-> ( 1r ` T ) ) ) |
| 24 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 25 | 24 | rngmgp | |- ( S e. Rng -> ( mulGrp ` S ) e. Smgrp ) |
| 26 | sgrpmgm | |- ( ( mulGrp ` S ) e. Smgrp -> ( mulGrp ` S ) e. Mgm ) |
|
| 27 | 25 26 | syl | |- ( S e. Rng -> ( mulGrp ` S ) e. Mgm ) |
| 28 | eqid | |- ( mulGrp ` T ) = ( mulGrp ` T ) |
|
| 29 | 28 | ringmgp | |- ( T e. Ring -> ( mulGrp ` T ) e. Mnd ) |
| 30 | 12 29 | syl | |- ( T e. ( Ring \ NzRing ) -> ( mulGrp ` T ) e. Mnd ) |
| 31 | 24 1 | mgpbas | |- B = ( Base ` ( mulGrp ` S ) ) |
| 32 | 28 18 | ringidval | |- ( 1r ` T ) = ( 0g ` ( mulGrp ` T ) ) |
| 33 | eqid | |- ( x e. B |-> ( 1r ` T ) ) = ( x e. B |-> ( 1r ` T ) ) |
|
| 34 | 31 32 33 | c0mgm | |- ( ( ( mulGrp ` S ) e. Mgm /\ ( mulGrp ` T ) e. Mnd ) -> ( x e. B |-> ( 1r ` T ) ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) |
| 35 | 27 30 34 | syl2an | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( x e. B |-> ( 1r ` T ) ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) |
| 36 | 23 35 | eqeltrd | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) |
| 37 | 16 36 | jca | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( H e. ( S GrpHom T ) /\ H e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) ) |
| 38 | 24 28 | isrnghmmul | |- ( H e. ( S RngHom T ) <-> ( ( S e. Rng /\ T e. Rng ) /\ ( H e. ( S GrpHom T ) /\ H e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) ) ) |
| 39 | 8 37 38 | sylanbrc | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H e. ( S RngHom T ) ) |