This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrnghmmul.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| isrnghmmul.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑆 ) | ||
| Assertion | isrnghmmul | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑀 MgmHom 𝑁 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrnghmmul.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 2 | isrnghmmul.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑆 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 6 | 3 4 5 | isrnghm | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 7 | 1 | rngmgp | ⊢ ( 𝑅 ∈ Rng → 𝑀 ∈ Smgrp ) |
| 8 | sgrpmgm | ⊢ ( 𝑀 ∈ Smgrp → 𝑀 ∈ Mgm ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑅 ∈ Rng → 𝑀 ∈ Mgm ) |
| 10 | 2 | rngmgp | ⊢ ( 𝑆 ∈ Rng → 𝑁 ∈ Smgrp ) |
| 11 | sgrpmgm | ⊢ ( 𝑁 ∈ Smgrp → 𝑁 ∈ Mgm ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑆 ∈ Rng → 𝑁 ∈ Mgm ) |
| 13 | 9 12 | anim12i | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm ) ) |
| 14 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 15 | 3 14 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 16 | 13 15 | anim12i | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) → ( ( 𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm ) ∧ 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) ) |
| 17 | 16 | biantrurd | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( ( 𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm ) ∧ 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 18 | anass | ⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm ) ∧ 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm ) ∧ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | |
| 19 | 17 18 | bitrdi | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm ) ∧ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 20 | 1 3 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
| 21 | 2 14 | mgpbas | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑁 ) |
| 22 | 1 4 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 23 | 2 5 | mgpplusg | ⊢ ( .r ‘ 𝑆 ) = ( +g ‘ 𝑁 ) |
| 24 | 20 21 22 23 | ismgmhm | ⊢ ( 𝐹 ∈ ( 𝑀 MgmHom 𝑁 ) ↔ ( ( 𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm ) ∧ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 25 | 19 24 | bitr4di | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ↔ 𝐹 ∈ ( 𝑀 MgmHom 𝑁 ) ) ) |
| 26 | 25 | pm5.32da | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑀 MgmHom 𝑁 ) ) ) ) |
| 27 | 26 | pm5.32i | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑀 MgmHom 𝑁 ) ) ) ) |
| 28 | 6 27 | bitri | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑀 MgmHom 𝑁 ) ) ) ) |