This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axdc . (Contributed by Mario Carneiro, 25-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | axdclem.1 | ⊢ 𝐹 = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) | |
| Assertion | axdclem | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃ 𝑧 ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 ) → ( 𝐾 ∈ ω → ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝐹 ‘ suc 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdclem.1 | ⊢ 𝐹 = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) | |
| 2 | neeq1 | ⊢ ( 𝑦 = { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } → ( 𝑦 ≠ ∅ ↔ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ≠ ∅ ) ) | |
| 3 | abn0 | ⊢ ( { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ≠ ∅ ↔ ∃ 𝑧 ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 ) | |
| 4 | 2 3 | bitrdi | ⊢ ( 𝑦 = { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } → ( 𝑦 ≠ ∅ ↔ ∃ 𝑧 ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 ) ) |
| 5 | eleq2 | ⊢ ( 𝑦 = { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } → ( ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ↔ ( 𝑔 ‘ 𝑦 ) ∈ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ) | |
| 6 | breq2 | ⊢ ( 𝑤 = 𝑧 → ( ( 𝐹 ‘ 𝐾 ) 𝑥 𝑤 ↔ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 ) ) | |
| 7 | 6 | cbvabv | ⊢ { 𝑤 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑤 } = { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } |
| 8 | 7 | eleq2i | ⊢ ( ( 𝑔 ‘ 𝑦 ) ∈ { 𝑤 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑤 } ↔ ( 𝑔 ‘ 𝑦 ) ∈ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) |
| 9 | 5 8 | bitr4di | ⊢ ( 𝑦 = { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } → ( ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ↔ ( 𝑔 ‘ 𝑦 ) ∈ { 𝑤 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑤 } ) ) |
| 10 | fvex | ⊢ ( 𝑔 ‘ 𝑦 ) ∈ V | |
| 11 | breq2 | ⊢ ( 𝑤 = ( 𝑔 ‘ 𝑦 ) → ( ( 𝐹 ‘ 𝐾 ) 𝑥 𝑤 ↔ ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝑔 ‘ 𝑦 ) ) ) | |
| 12 | 10 11 | elab | ⊢ ( ( 𝑔 ‘ 𝑦 ) ∈ { 𝑤 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑤 } ↔ ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝑔 ‘ 𝑦 ) ) |
| 13 | 9 12 | bitrdi | ⊢ ( 𝑦 = { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } → ( ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ↔ ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝑔 ‘ 𝑦 ) ) ) |
| 14 | fveq2 | ⊢ ( 𝑦 = { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ) | |
| 15 | 14 | breq2d | ⊢ ( 𝑦 = { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } → ( ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝑔 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ) ) |
| 16 | 13 15 | bitrd | ⊢ ( 𝑦 = { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } → ( ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ↔ ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ) ) |
| 17 | 4 16 | imbi12d | ⊢ ( 𝑦 = { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } → ( ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ↔ ( ∃ 𝑧 ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 → ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ) ) ) |
| 18 | 17 | rspcv | ⊢ ( { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ∈ 𝒫 dom 𝑥 → ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) → ( ∃ 𝑧 ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 → ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ) ) ) |
| 19 | fvex | ⊢ ( 𝐹 ‘ 𝐾 ) ∈ V | |
| 20 | vex | ⊢ 𝑧 ∈ V | |
| 21 | 19 20 | brelrn | ⊢ ( ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 → 𝑧 ∈ ran 𝑥 ) |
| 22 | 21 | abssi | ⊢ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ⊆ ran 𝑥 |
| 23 | sstr | ⊢ ( ( { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ⊆ ran 𝑥 ∧ ran 𝑥 ⊆ dom 𝑥 ) → { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ⊆ dom 𝑥 ) | |
| 24 | 22 23 | mpan | ⊢ ( ran 𝑥 ⊆ dom 𝑥 → { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ⊆ dom 𝑥 ) |
| 25 | vex | ⊢ 𝑥 ∈ V | |
| 26 | 25 | dmex | ⊢ dom 𝑥 ∈ V |
| 27 | 26 | elpw2 | ⊢ ( { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ∈ 𝒫 dom 𝑥 ↔ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ⊆ dom 𝑥 ) |
| 28 | 24 27 | sylibr | ⊢ ( ran 𝑥 ⊆ dom 𝑥 → { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ∈ 𝒫 dom 𝑥 ) |
| 29 | 18 28 | syl11 | ⊢ ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) → ( ran 𝑥 ⊆ dom 𝑥 → ( ∃ 𝑧 ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 → ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ) ) ) |
| 30 | 29 | 3imp | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃ 𝑧 ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 ) → ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ) |
| 31 | fvex | ⊢ ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ∈ V | |
| 32 | nfcv | ⊢ Ⅎ 𝑦 𝑠 | |
| 33 | nfcv | ⊢ Ⅎ 𝑦 𝐾 | |
| 34 | nfcv | ⊢ Ⅎ 𝑦 ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) | |
| 35 | breq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐾 ) → ( 𝑦 𝑥 𝑧 ↔ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 ) ) | |
| 36 | 35 | abbidv | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐾 ) → { 𝑧 ∣ 𝑦 𝑥 𝑧 } = { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) |
| 37 | 36 | fveq2d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐾 ) → ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) = ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ) |
| 38 | 32 33 34 1 37 | frsucmpt | ⊢ ( ( 𝐾 ∈ ω ∧ ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ∈ V ) → ( 𝐹 ‘ suc 𝐾 ) = ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ) |
| 39 | 31 38 | mpan2 | ⊢ ( 𝐾 ∈ ω → ( 𝐹 ‘ suc 𝐾 ) = ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ) |
| 40 | 39 | breq2d | ⊢ ( 𝐾 ∈ ω → ( ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝐹 ‘ suc 𝐾 ) ↔ ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝑔 ‘ { 𝑧 ∣ ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 } ) ) ) |
| 41 | 30 40 | syl5ibrcom | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃ 𝑧 ( 𝐹 ‘ 𝐾 ) 𝑥 𝑧 ) → ( 𝐾 ∈ ω → ( 𝐹 ‘ 𝐾 ) 𝑥 ( 𝐹 ‘ suc 𝐾 ) ) ) |